Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 423, Pages 264–275 (Mi znsl6007)  

This article is cited in 2 scientific papers (total in 2 papers)

Homomorphisms and involutions of unramified henselian division algebras

S. V. Tikhonova, V. I. Yanchevskiib

a Belarusian State University, Minsk, Belarus
b Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, Belarus
Full-text PDF (210 kB) Citations (2)
References:
Abstract: Let $K$ be a henselian field with the residue field $\overline K$, and let $\mathcal A_1$, $\mathcal A_2$ be finite dimensional division unramified $K$-algebras with residue algebras $\overline{\mathcal A}_1$ and $\overline{\mathcal A}_2$. Further, let $\mathrm{Hom}_K(\mathcal A_1,\mathcal A_2)$ be the set of nonzero $K$-homomorphisms from $\mathcal A_1$ to $\mathcal A_2$. We prove that there is a natural bijection between the set of nonzero $\overline K$-homomorphisms from $\overline{\mathcal A}_1$ to $\overline{\mathcal A}_2$ and the factor set of $\mathrm{Hom}_K(\mathcal A_1,\mathcal A_2)$ under the equivalence relation: $\phi_1\sim\phi_2$ $\Leftrightarrow$ there exists $m\in1+M_{\mathcal A_2}$ such that $\phi_2=\phi_1i_m$, where $i_m$ is the inner automorphism of $\mathcal A_2$ induced by $m$.
A similar result is obtained for unramified algebras with involutions.
Key words and phrases: unramified division algebra, henselian division algebra, involution.
Received: 31.01.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 209, Issue 4, Pages 657–664
DOI: https://doi.org/10.1007/s10958-015-2519-x
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: Russian
Citation: S. V. Tikhonov, V. I. Yanchevskii, “Homomorphisms and involutions of unramified henselian division algebras”, Problems in the theory of representations of algebras and groups. Part 26, Zap. Nauchn. Sem. POMI, 423, POMI, St. Petersburg, 2014, 264–275; J. Math. Sci. (N. Y.), 209:4 (2015), 657–664
Citation in format AMSBIB
\Bibitem{TikYan14}
\by S.~V.~Tikhonov, V.~I.~Yanchevskii
\paper Homomorphisms and involutions of unramified henselian division algebras
\inbook Problems in the theory of representations of algebras and groups. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 423
\pages 264--275
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6007}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3480700}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 209
\issue 4
\pages 657--664
\crossref{https://doi.org/10.1007/s10958-015-2519-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943363687}
Linking options:
  • https://www.mathnet.ru/eng/znsl6007
  • https://www.mathnet.ru/eng/znsl/v423/p264
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :64
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024