Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 423, Pages 244–263 (Mi znsl6006)  

This article is cited in 11 scientific papers (total in 11 papers)

Non-Abelian $K$-theory for Chevalley groups over rings

A. V. Stepanovab

a St. Petersburg Electrotechnical University, St. Petersburg, Russia
b St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
References:
Abstract: We announce some results on the structure of Chevalley groups $G(R)$ over a commutative ring $R$ recently obtained by the author. The following results are generalized and improved:
(1) Relative local-global principle.
(2) Generators of relative elementary subgroups.
(3) Relative multi-commutator formulas.
(4) Nilpotent structure of relative $\mathrm K_1$.
(5) Boundedness of commutator length.
\noindent The proof of first two items is based on computations with generators of the elementary subgroups translated into the language of parabolic subgroups. For the proof of the further ones we enlarge the relative elementary subgroup, construct a generic element, and use localization in a universal ring.
Key words and phrases: Chevalley group, principal congruence subgroup, local-global principle, commutator formula, elementary subgroup, commutator width.
Received: 02.12.2013
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 209, Issue 4, Pages 645–656
DOI: https://doi.org/10.1007/s10958-015-2518-y
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: A. V. Stepanov, “Non-Abelian $K$-theory for Chevalley groups over rings”, Problems in the theory of representations of algebras and groups. Part 26, Zap. Nauchn. Sem. POMI, 423, POMI, St. Petersburg, 2014, 244–263; J. Math. Sci. (N. Y.), 209:4 (2015), 645–656
Citation in format AMSBIB
\Bibitem{Ste14}
\by A.~V.~Stepanov
\paper Non-Abelian $K$-theory for Chevalley groups over rings
\inbook Problems in the theory of representations of algebras and groups. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 423
\pages 244--263
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3480699}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 209
\issue 4
\pages 645--656
\crossref{https://doi.org/10.1007/s10958-015-2518-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943358367}
Linking options:
  • https://www.mathnet.ru/eng/znsl6006
  • https://www.mathnet.ru/eng/znsl/v423/p244
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :59
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024