Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 423, Pages 183–204 (Mi znsl6004)  

This article is cited in 5 scientific papers (total in 5 papers)

Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements

I. M. Pevzner

Herzen State Pedagogical University of Russia, St. Petersburg, Russia
Full-text PDF (253 kB) Citations (5)
References:
Abstract: We study structure of $\mathrm{GL}(6,K)$ with respect to a certain family of conjugacy classes, whose elements are called quasi-root. Namely, we prove that any element of $\mathrm{GL}(6,K)$ is a product of three quasi-root elements, and completely describe the elements that are products of two quasi-root elements. The result arises in the study of width of exceptional groups of type $E_6$, but also is of independent interest.
Key words and phrases: general linear group, width of group, root elements.
Received: 15.09.2013
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 209, Issue 4, Pages 600–613
DOI: https://doi.org/10.1007/s10958-015-2516-0
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: I. M. Pevzner, “Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements”, Problems in the theory of representations of algebras and groups. Part 26, Zap. Nauchn. Sem. POMI, 423, POMI, St. Petersburg, 2014, 183–204; J. Math. Sci. (N. Y.), 209:4 (2015), 600–613
Citation in format AMSBIB
\Bibitem{Pev14}
\by I.~M.~Pevzner
\paper Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements
\inbook Problems in the theory of representations of algebras and groups. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 423
\pages 183--204
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6004}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3480697}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 209
\issue 4
\pages 600--613
\crossref{https://doi.org/10.1007/s10958-015-2516-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943448813}
Linking options:
  • https://www.mathnet.ru/eng/znsl6004
  • https://www.mathnet.ru/eng/znsl/v423/p183
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025