Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 423, Pages 166–182 (Mi znsl6003)  

This article is cited in 7 scientific papers (total in 7 papers)

Inherently non-finitely generated varieties of aperiodic monoids with central idempotents

Edmond W. H. Lee

Division of Math., Science, and Technology, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida 33314, USA
Full-text PDF (204 kB) Citations (7)
References:
Abstract: Let $\mathscr A$ denote the class of aperiodic monoids with central idempotents. A subvariety of $\mathscr A$ that is not contained in any finitely generated subvariety of $\mathscr A$ is said to be inherently non-finitely generated. A characterization of inherently non-finitely generated subvarieties of $\mathscr A$, based on identities that they cannot satisfy and monoids that they must contain, is given. It turns out that there exists a unique minimal inherently non-finitely generated subvariety of $\mathscr A$, the inclusion of which is both necessary and sufficient for a subvariety of $\mathscr A$ to be inherently non-finitely generated. Further, it is decidable in polynomial time if a finite set of identities defines an inherently non-finitely generated subvariety of $\mathscr A$.
Key words and phrases: monoid, aperiodic monoid, central idempotent, variety, finitely generated, inherently non-finitely generated.
Received: 03.10.2013
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 209, Issue 4, Pages 588–599
DOI: https://doi.org/10.1007/s10958-015-2515-1
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: English
Citation: Edmond W. H. Lee, “Inherently non-finitely generated varieties of aperiodic monoids with central idempotents”, Problems in the theory of representations of algebras and groups. Part 26, Zap. Nauchn. Sem. POMI, 423, POMI, St. Petersburg, 2014, 166–182; J. Math. Sci. (N. Y.), 209:4 (2015), 588–599
Citation in format AMSBIB
\Bibitem{Lee14}
\by Edmond~W.~H.~Lee
\paper Inherently non-finitely generated varieties of aperiodic monoids with central idempotents
\inbook Problems in the theory of representations of algebras and groups. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 423
\pages 166--182
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3480696}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 209
\issue 4
\pages 588--599
\crossref{https://doi.org/10.1007/s10958-015-2515-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943358523}
Linking options:
  • https://www.mathnet.ru/eng/znsl6003
  • https://www.mathnet.ru/eng/znsl/v423/p166
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :57
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024