|
Zapiski Nauchnykh Seminarov POMI, 2014, Volume 423, Pages 33–56
(Mi znsl5996)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Hochschild cohomology for self-injective algebras of tree class $D_n$. VI
Yu. V. Volkov St. Petersburg State University, St. Petersburg, Russia
Abstract:
For $R$-bimodule $M$ with $k$-algebra structure and a compatible action of a finite group $G\le\mathrm{Aut}R$ we define algebra $\mathrm{HH}^*(R,M)^{G\uparrow}$. We construct an isomorphism between the algebras $\mathrm{HH^*(R)}$ and $\mathrm{HH}^*(\widetilde R,\widetilde R\#kG)^{G\uparrow}$ in the terms of bar-resolutions, where $\widetilde R=R\#kG^*$. Using these results, we calculate the Hochschild cohomology algebra for a family of self-injective algebras of tree class $D_n$.
Key words and phrases:
self-injective algebras, finite representation type, Hochschild cohomology, smash-product.
Received: 13.02.2014
Citation:
Yu. V. Volkov, “Hochschild cohomology for self-injective algebras of tree class $D_n$. VI”, Problems in the theory of representations of algebras and groups. Part 26, Zap. Nauchn. Sem. POMI, 423, POMI, St. Petersburg, 2014, 33–56; J. Math. Sci. (N. Y.), 209:4 (2015), 500–514
Linking options:
https://www.mathnet.ru/eng/znsl5996 https://www.mathnet.ru/eng/znsl/v423/p33
|
Statistics & downloads: |
Abstract page: | 284 | Full-text PDF : | 51 | References: | 52 |
|