Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 320, Pages 97–105 (Mi znsl598)  

This article is cited in 1 scientific paper (total in 1 paper)

Invariance principle in a bilinear model with weak non-linearity

M. A. Lifshits

St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (165 kB) Citations (1)
References:
Abstract: We consider a series of bilinear sequences
$$ X_k^{(n)}=X_{k-1}^{(n)}+\varepsilon_k+b_n X_{k-1}^{(n)}\varepsilon_{k-1},\qquad k\ge 1, $$
with i.i.d. sequence $\varepsilon_k$, small bilinearity coefficients $b_n=\beta n^{-1/2}$ and show that the processes obtained from $X_k^{(n)}$ by usual scaling in time and space converge to a diffusion process $Y_\beta$. We provide an explicit form of $Y_\beta$, investigate the moments of $Y_\beta$ and study the limit behavior of some other quantities related to $X_k^{(n)}$ and important for statistical applications.
Received: 19.11.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 137, Issue 1, Pages 4541–4545
DOI: https://doi.org/10.1007/s10958-006-0247-y
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: M. A. Lifshits, “Invariance principle in a bilinear model with weak non-linearity”, Probability and statistics. Part 8, Zap. Nauchn. Sem. POMI, 320, POMI, St. Petersburg, 2004, 97–105; J. Math. Sci. (N. Y.), 137:1 (2006), 4541–4545
Citation in format AMSBIB
\Bibitem{Lif04}
\by M.~A.~Lifshits
\paper Invariance principle in a~bilinear model with weak non-linearity
\inbook Probability and statistics. Part~8
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 320
\pages 97--105
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl598}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2115868}
\zmath{https://zbmath.org/?q=an:1080.60030}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 137
\issue 1
\pages 4541--4545
\crossref{https://doi.org/10.1007/s10958-006-0247-y}
Linking options:
  • https://www.mathnet.ru/eng/znsl598
  • https://www.mathnet.ru/eng/znsl/v320/p97
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :49
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024