Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 218, Pages 149–165 (Mi znsl5979)  

Ansatz with Hermite polynomials for a multidimensional well

T. F. Pankratova

Saint Petersburg State University
Abstract: The Schrödinger operator in $\mathbb R^d$ with an analytic potential, having a nondegenerated minimum (well) at the origin, is considered. The ansatz with Hermite polynomials is used. Under a Diophantine condition on the frequencies, full asymptotic series (the Plank constant $h$ tending to zero) for eigenfunctions with given quantum numbers $n\in\mathbb N^d$ concentrated at the bottom of the well, is constructed, the Gaussian-like asymptotics being valid in a neighbourhood of the origin which is independent of $h$. The obtained asymptotic series can be prolonged on a larger domain with the help of ray methods. The way to find zero-sets of the eigenfunctions is described. Some exarnples are considered. Bibliography: 22 titles.
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 86, Issue 3, Pages 2755–2765
DOI: https://doi.org/10.1007/BF02355166
Bibliographic databases:
Document Type: Article
UDC: 550.344
Language: Russian
Citation: T. F. Pankratova, “Ansatz with Hermite polynomials for a multidimensional well”, Mathematical problems in the theory of wave propagation. Part 24, Zap. Nauchn. Sem. POMI, 218, POMI, St. Petersburg, 1994, 149–165; J. Math. Sci. (New York), 86:3 (1997), 2755–2765
Citation in format AMSBIB
\Bibitem{Pan94}
\by T.~F.~Pankratova
\paper Ansatz with Hermite polynomials for a~multidimensional well
\inbook Mathematical problems in the theory of wave propagation. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 218
\pages 149--165
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5979}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1492174}
\zmath{https://zbmath.org/?q=an:0930.35049}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 86
\issue 3
\pages 2755--2765
\crossref{https://doi.org/10.1007/BF02355166}
Linking options:
  • https://www.mathnet.ru/eng/znsl5979
  • https://www.mathnet.ru/eng/znsl/v218/p149
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024