Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 218, Pages 118–137 (Mi znsl5977)  

This article is cited in 7 scientific papers (total in 7 papers)

Effective model of the fractured medium with fractures characterized as displacements discontinuity surfaces

L. A. Molotkova, A. V. Bakulinb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b St. Petersburg State University
Full-text PDF (994 kB) Citations (7)
Abstract: Medium containing a set of parallel linear slip interfaces is considered. Long wavelength equivalent (effective) model for medium is shown to be elastic anisotropic lossless medium. Experimental results demonstrate good validity of effective model for wave propagation description in medium consisting of stack of parallel plates with water-wetted surfaces under small load. Bibliography: 20 titles.
Received: 07.06.1994
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 86, Issue 3, Pages 2735–2746
DOI: https://doi.org/10.1007/BF02355164
Bibliographic databases:
Document Type: Article
UDC: 550.34
Language: Russian
Citation: L. A. Molotkov, A. V. Bakulin, “Effective model of the fractured medium with fractures characterized as displacements discontinuity surfaces”, Mathematical problems in the theory of wave propagation. Part 24, Zap. Nauchn. Sem. POMI, 218, POMI, St. Petersburg, 1994, 118–137; J. Math. Sci. (New York), 86:3 (1997), 2735–2746
Citation in format AMSBIB
\Bibitem{MolBak94}
\by L.~A.~Molotkov, A.~V.~Bakulin
\paper Effective model of the fractured medium with fractures characterized as displacements discontinuity surfaces
\inbook Mathematical problems in the theory of wave propagation. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 218
\pages 118--137
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5977}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1492173}
\zmath{https://zbmath.org/?q=an:0973.74621}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 86
\issue 3
\pages 2735--2746
\crossref{https://doi.org/10.1007/BF02355164}
Linking options:
  • https://www.mathnet.ru/eng/znsl5977
  • https://www.mathnet.ru/eng/znsl/v218/p118
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024