Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 217, Pages 74–82 (Mi znsl5961)  

Nonclassical weighted norm estimates for some Calderón–Zygmund operators on the plane

P. P. Kargaev

Saint Petersburg State University
Abstract: Let $\mu$ be a Borel measure with a compact support $F\subset\mathbb C$, $\rho$ be the distance from the set $F$;
$$ A_K(f)(z)=\int_FK(\zeta,z)f(\zeta)\,dm(\zeta),\qquad z\in\mathbb C\setminus F, $$
where $K(\zeta,z)=(\zeta-z)^{-2}$ or $K(\zeta,z)=(|\zeta-z|(\zeta-z))^{-1}$ and $m$ is the Lebesque measure. Let $\psi\colon(0,+\infty)\to\mathbb R_+$ be a nondecreasing positive function, $\Phi(z)=\psi(\rho(z))\rho(z)$, $z\in\mathbb C\setminus F$.
We prove that under some additional assumptions on p, the operator $A_K$ is bounded from $L^2(\mu)$ to $L^2(\Phi m)$ if and only if
$$ \int^1_0\frac{\psi(t)}t\,dt+\int_1^{+\infty}\frac{\psi(t)}{t^2}\,dt<+\infty. $$
This means that the interference effect is not observed in such situations. Bibliography: 4 titles.
Received: 14.02.1994
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 85, Issue 2, Pages 1802–1807
DOI: https://doi.org/10.1007/BF02355290
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: P. P. Kargaev, “Nonclassical weighted norm estimates for some Calderón–Zygmund operators on the plane”, Investigations on linear operators and function theory. Part 22, Zap. Nauchn. Sem. POMI, 217, POMI, St. Petersburg, 1994, 74–82; J. Math. Sci. (New York), 85:2 (1997), 1802–1807
Citation in format AMSBIB
\Bibitem{Kar94}
\by P.~P.~Kargaev
\paper Nonclassical weighted norm estimates for some Calder\'on--Zygmund operators on the plane
\inbook Investigations on linear operators and function theory. Part~22
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 217
\pages 74--82
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5961}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1327516}
\zmath{https://zbmath.org/?q=an:0866.42008|0907.42012}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 85
\issue 2
\pages 1802--1807
\crossref{https://doi.org/10.1007/BF02355290}
Linking options:
  • https://www.mathnet.ru/eng/znsl5961
  • https://www.mathnet.ru/eng/znsl/v217/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024