|
Zapiski Nauchnykh Seminarov POMI, 1994, Volume 217, Pages 74–82
(Mi znsl5961)
|
|
|
|
Nonclassical weighted norm estimates for some Calderón–Zygmund operators on the plane
P. P. Kargaev Saint Petersburg State University
Abstract:
Let $\mu$ be a Borel measure with a compact support $F\subset\mathbb C$, $\rho$ be the distance from the set $F$;
$$
A_K(f)(z)=\int_FK(\zeta,z)f(\zeta)\,dm(\zeta),\qquad z\in\mathbb C\setminus F,
$$
where $K(\zeta,z)=(\zeta-z)^{-2}$ or $K(\zeta,z)=(|\zeta-z|(\zeta-z))^{-1}$ and $m$ is the Lebesque measure. Let $\psi\colon(0,+\infty)\to\mathbb R_+$ be a nondecreasing positive function, $\Phi(z)=\psi(\rho(z))\rho(z)$, $z\in\mathbb C\setminus F$.
We prove that under some additional assumptions on p, the operator $A_K$ is bounded from $L^2(\mu)$ to $L^2(\Phi m)$ if and only if
$$
\int^1_0\frac{\psi(t)}t\,dt+\int_1^{+\infty}\frac{\psi(t)}{t^2}\,dt<+\infty.
$$
This means that the interference effect is not observed in such situations. Bibliography: 4 titles.
Received: 14.02.1994
Citation:
P. P. Kargaev, “Nonclassical weighted norm estimates for some Calderón–Zygmund operators on the plane”, Investigations on linear operators and function theory. Part 22, Zap. Nauchn. Sem. POMI, 217, POMI, St. Petersburg, 1994, 74–82; J. Math. Sci. (New York), 85:2 (1997), 1802–1807
Linking options:
https://www.mathnet.ru/eng/znsl5961 https://www.mathnet.ru/eng/znsl/v217/p74
|
Statistics & downloads: |
Abstract page: | 118 | Full-text PDF : | 46 |
|