Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 217, Pages 36–53 (Mi znsl5958)  

Weak generators of the algebra of measures and unicellularity of convolution operators

M. F. Gamal'

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Abstract: A general procedure is constructed, which allows us to consider operators of convolution with measures acting on a large class of spaces of distributions on the segment $[0,a)$, $0<a<\infty$. It is proved that if a measure $\mu$ is a weak generator of the algebra of measures on $[0,a)$, then $C_\mu$ (the operator of convolution with $\mu$) is unicellular. We present a condition on the measure $\mu$ under which unicellularity of $C_\mu$ implies that $\mu$ is a weak generator of the algebra of measures. The following statement is proved as well. Let $\theta(z)=e^{-a\frac{1+z}{1-z}}$, $K_\theta=H^2\ominus\theta H^2$, and let $P_\theta$ be the orthogonal projection from $H^2$ onto $K_\theta$; moreover, let $\mu$ be a weak generator of the algebra of measures on $[0,a)$ and $\varphi(z)=(\mathcal F^{-1}\mu)(i\frac{z+1}{z-1})$, $z\in\mathbb D$ (here $\mathbb D$ is the unit disc, and $\mathcal F^{-1}$ is the inverse Fourier transform). Let $\psi\in H^\infty$ and let $p$ be a polynomial such that $p\circ(\psi-\varphi)\in\theta H^\infty$. Then the operator $x\mapsto P_\theta\psi x$ acting in $K_\theta$ is unicellular. Bibliography: 13 titles.
Received: 05.01.1994
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 85, Issue 2, Pages 1779–1789
DOI: https://doi.org/10.1007/BF02355287
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: M. F. Gamal', “Weak generators of the algebra of measures and unicellularity of convolution operators”, Investigations on linear operators and function theory. Part 22, Zap. Nauchn. Sem. POMI, 217, POMI, St. Petersburg, 1994, 36–53; J. Math. Sci. (New York), 85:2 (1997), 1779–1789
Citation in format AMSBIB
\Bibitem{Gam94}
\by M.~F.~Gamal'
\paper Weak generators of the algebra of measures and unicellularity of convolution operators
\inbook Investigations on linear operators and function theory. Part~22
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 217
\pages 36--53
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5958}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1327513}
\zmath{https://zbmath.org/?q=an:0877.46014|0907.46021}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 85
\issue 2
\pages 1779--1789
\crossref{https://doi.org/10.1007/BF02355287}
Linking options:
  • https://www.mathnet.ru/eng/znsl5958
  • https://www.mathnet.ru/eng/znsl/v217/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024