|
Zapiski Nauchnykh Seminarov POMI, 1994, Volume 217, Pages 16–25
(Mi znsl5956)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
On a maximum principle for pseudocontinuable functions
A. B. Aleksandrov St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Abstract:
Let $\theta$ be an inner function; $\alpha\in\mathbb C$, $|\alpha|=1$. Denote by $\sigma_\alpha$ the nonnegative singular measure whose Poisson integral is equal to $\operatorname{Re}\frac{\alpha+\theta}{\alpha-\theta}$. The Clark theorem allows us naturally to identity $H^2\ominus\theta H^2$ with $L^2(\sigma_\alpha)$. Let $U_\alpha$ be the unitary operator producing this identification. The main aim of this paper is to prove the following theorem.
Theorem. Let $f\in H^2\ominus\theta H^2$; $2<p\le+\infty$; $\alpha,\beta\in\mathbb C$; $|\alpha|=|\beta|=1$, $\alpha\ne\beta$. Suppose that $U_\alpha f\in L^p(\sigma_\alpha)$ and $U_\beta f\in L^p(\sigma_\beta)$. Then $f\in H^p$.
Bibliography: 11 titles.
Received: 27.01.1994
Citation:
A. B. Aleksandrov, “On a maximum principle for pseudocontinuable functions”, Investigations on linear operators and function theory. Part 22, Zap. Nauchn. Sem. POMI, 217, POMI, St. Petersburg, 1994, 16–25; J. Math. Sci. (New York), 85:2 (1997), 1767–1772
Linking options:
https://www.mathnet.ru/eng/znsl5956 https://www.mathnet.ru/eng/znsl/v217/p16
|
Statistics & downloads: |
Abstract page: | 158 | Full-text PDF : | 54 |
|