Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 217, Pages 16–25 (Mi znsl5956)  

This article is cited in 5 scientific papers (total in 5 papers)

On a maximum principle for pseudocontinuable functions

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Full-text PDF (420 kB) Citations (5)
Abstract: Let $\theta$ be an inner function; $\alpha\in\mathbb C$, $|\alpha|=1$. Denote by $\sigma_\alpha$ the nonnegative singular measure whose Poisson integral is equal to $\operatorname{Re}\frac{\alpha+\theta}{\alpha-\theta}$. The Clark theorem allows us naturally to identity $H^2\ominus\theta H^2$ with $L^2(\sigma_\alpha)$. Let $U_\alpha$ be the unitary operator producing this identification. The main aim of this paper is to prove the following theorem.
Theorem. Let $f\in H^2\ominus\theta H^2$; $2<p\le+\infty$; $\alpha,\beta\in\mathbb C$; $|\alpha|=|\beta|=1$, $\alpha\ne\beta$. Suppose that $U_\alpha f\in L^p(\sigma_\alpha)$ and $U_\beta f\in L^p(\sigma_\beta)$. Then $f\in H^p$.
Bibliography: 11 titles.
Received: 27.01.1994
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 85, Issue 2, Pages 1767–1772
DOI: https://doi.org/10.1007/BF02355285
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. B. Aleksandrov, “On a maximum principle for pseudocontinuable functions”, Investigations on linear operators and function theory. Part 22, Zap. Nauchn. Sem. POMI, 217, POMI, St. Petersburg, 1994, 16–25; J. Math. Sci. (New York), 85:2 (1997), 1767–1772
Citation in format AMSBIB
\Bibitem{Ale94}
\by A.~B.~Aleksandrov
\paper On a~maximum principle for pseudocontinuable functions
\inbook Investigations on linear operators and function theory. Part~22
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 217
\pages 16--25
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5956}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1327511}
\zmath{https://zbmath.org/?q=an:0871.30034|0907.30036}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 85
\issue 2
\pages 1767--1772
\crossref{https://doi.org/10.1007/BF02355285}
Linking options:
  • https://www.mathnet.ru/eng/znsl5956
  • https://www.mathnet.ru/eng/znsl/v217/p16
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024