Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 215, Pages 246–255 (Mi znsl5935)  

This article is cited in 1 scientific paper (total in 1 paper)

Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin–Voight fluids and Oldroyd fluids

A. P. Oskolkov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Full-text PDF (369 kB) Citations (1)
Abstract: In this paper we study the global classical solvability on the semiaxes $t\in\mathbb R^+$ of the first initial-boundary value problem for two-dimensional perturbed equations (11) and three-dimensional perturbed equations (12) and (13), and also we study the convergence for $\varepsilon\to0$ of solutions of all these perturbed problems to the classical solutions of the first boundaryvalue problem for the equations (8), (9) and (10). Bibliography: 10 titles.
Received: 01.02.1994
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 85, Issue 1, Pages 1715–1721
DOI: https://doi.org/10.1007/BF02355332
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. P. Oskolkov, “Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin–Voight fluids and Oldroyd fluids”, Differential geometry, Lie groups and mechanics. Part 14, Zap. Nauchn. Sem. POMI, 215, Nauka, St. Petersburg, 1994, 246–255; J. Math. Sci. (New York), 85:1 (1997), 1715–1721
Citation in format AMSBIB
\Bibitem{Osk94}
\by A.~P.~Oskolkov
\paper Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin--Voight fluids and Oldroyd fluids
\inbook Differential geometry, Lie groups and mechanics. Part~14
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 215
\pages 246--255
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5935}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1329987}
\zmath{https://zbmath.org/?q=an:0876.76005|0907.76005}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 85
\issue 1
\pages 1715--1721
\crossref{https://doi.org/10.1007/BF02355332}
Linking options:
  • https://www.mathnet.ru/eng/znsl5935
  • https://www.mathnet.ru/eng/znsl/v215/p246
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024