Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 215, Pages 217–225 (Mi znsl5933)  

This article is cited in 1 scientific paper (total in 1 paper)

An intrinsic description of functions defined on a plane convex domain and having a prescribed order approximation by algebraic polynomials

Yu. V. Netrusov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Full-text PDF (385 kB) Citations (1)
Abstract: Let $0<\alpha$, $0<p\le\infty$, $m$ a positive integer, let $f$ a function defined on a plane convex domain $G$. Denote by $E_m(f,L_p(G))$ the best approximation of $f$ in $L_p(G)$ by algebraic polynomials of degree $m$. A description of functions $f\in L_p(G)$ such that inequalities hold
$$ E_m(f,L_p(G))\le Cm^{-\alpha},\qquad m=1,2,\dots, $$
is given. Bibliography: 7 titles.
Received: 01.03.1994
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 85, Issue 1, Pages 1698–1703
DOI: https://doi.org/10.1007/BF02355330
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: Yu. V. Netrusov, “An intrinsic description of functions defined on a plane convex domain and having a prescribed order approximation by algebraic polynomials”, Differential geometry, Lie groups and mechanics. Part 14, Zap. Nauchn. Sem. POMI, 215, Nauka, St. Petersburg, 1994, 217–225; J. Math. Sci. (New York), 85:1 (1997), 1698–1703
Citation in format AMSBIB
\Bibitem{Net94}
\by Yu.~V.~Netrusov
\paper An intrinsic description of functions defined on a~plane convex domain and having a~prescribed order approximation by algebraic polynomials
\inbook Differential geometry, Lie groups and mechanics. Part~14
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 215
\pages 217--225
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5933}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1329985}
\zmath{https://zbmath.org/?q=an:0869.41003|0907.41007}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 85
\issue 1
\pages 1698--1703
\crossref{https://doi.org/10.1007/BF02355330}
Linking options:
  • https://www.mathnet.ru/eng/znsl5933
  • https://www.mathnet.ru/eng/znsl/v215/p217
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:81
    Full-text PDF :28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024