Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 215, Pages 115–129 (Mi znsl5926)  

This article is cited in 4 scientific papers (total in 4 papers)

Regular representation of the quantum Heisenberg double $\{U_q(sl(2)),Fun_q(sl(2))\}$ ($q$ is a root of unity)

D. V. Gluschenkov, A. V. Lyakhovskaya

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Full-text PDF (528 kB) Citations (4)
Abstract: Pairing between the universal enveloping algebra $U_q(sl(2))$ and the algebra of functions over $SL_q(2)$ is obtained in explicit terms. The regular representation of the quantum double is constructed and investigated. The structure of the root subspaces of the Casimir operator is revealed and described in terms of $SL_q(2)$ elements. Bibliography: 7 titles.
Received: 01.11.1993
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 85, Issue 1, Pages 1629–1639
DOI: https://doi.org/10.1007/BF02355323
Bibliographic databases:
Document Type: Article
UDC: 530.145
Language: English
Citation: D. V. Gluschenkov, A. V. Lyakhovskaya, “Regular representation of the quantum Heisenberg double $\{U_q(sl(2)),Fun_q(sl(2))\}$ ($q$ is a root of unity)”, Differential geometry, Lie groups and mechanics. Part 14, Zap. Nauchn. Sem. POMI, 215, Nauka, St. Petersburg, 1994, 115–129; J. Math. Sci. (New York), 85:1 (1997), 1629–1639
Citation in format AMSBIB
\Bibitem{GluLya94}
\by D.~V.~Gluschenkov, A.~V.~Lyakhovskaya
\paper Regular representation of the quantum Heisenberg double $\{U_q(sl(2)),Fun_q(sl(2))\}$ ($q$~is a~root of unity)
\inbook Differential geometry, Lie groups and mechanics. Part~14
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 215
\pages 115--129
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5926}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1329978}
\zmath{https://zbmath.org/?q=an:0866.17014|0907.17011}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 85
\issue 1
\pages 1629--1639
\crossref{https://doi.org/10.1007/BF02355323}
Linking options:
  • https://www.mathnet.ru/eng/znsl5926
  • https://www.mathnet.ru/eng/znsl/v215/p115
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024