Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 215, Pages 38–49 (Mi znsl5921)  

This article is cited in 1 scientific paper (total in 1 paper)

Do nonsingular globaly bounded positon solutions exist?

Roland Beutlerab, Vladimir B. Matveevab

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b Max-Planck-Institut für Metallforschung, Institut für Physik, Stuttgart
Full-text PDF (441 kB) Citations (1)
Abstract: The positon solutions discovered so far for several nonlinear evolution equations are singular solutions. It is shown that for a discrete version of the well known sinh-Gordon equation non-singular positon solutions exist. Under appropriate restrictions on the parameters of the construction they are globaly bounded. In the continuum limit the corresponding (singular) solutions of the sinh-Gordon equation are recovered. Bibliography: 11 titles.
Key words and phrases: discrete sinh-Gordon equation, positon solutions.
Received: 01.03.1994
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 85, Issue 1, Pages 1578–1585
DOI: https://doi.org/10.1007/BF02355318
Bibliographic databases:
Document Type: Article
UDC: 530.145
Language: English
Citation: Roland Beutler, Vladimir B. Matveev, “Do nonsingular globaly bounded positon solutions exist?”, Differential geometry, Lie groups and mechanics. Part 14, Zap. Nauchn. Sem. POMI, 215, Nauka, St. Petersburg, 1994, 38–49; J. Math. Sci. (New York), 85:1 (1997), 1578–1585
Citation in format AMSBIB
\Bibitem{BeuMat94}
\by Roland~Beutler, Vladimir~B.~Matveev
\paper Do nonsingular globaly bounded positon solutions exist?
\inbook Differential geometry, Lie groups and mechanics. Part~14
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 215
\pages 38--49
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5921}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1329973}
\zmath{https://zbmath.org/?q=an:0866.39003|0907.39014}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 85
\issue 1
\pages 1578--1585
\crossref{https://doi.org/10.1007/BF02355318}
Linking options:
  • https://www.mathnet.ru/eng/znsl5921
  • https://www.mathnet.ru/eng/znsl/v215/p38
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:855
    Full-text PDF :518
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024