|
Zapiski Nauchnykh Seminarov POMI, 1994, Volume 215, Pages 38–49
(Mi znsl5921)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Do nonsingular globaly bounded positon solutions exist?
Roland Beutlerab, Vladimir B. Matveevab a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b Max-Planck-Institut für Metallforschung, Institut für Physik, Stuttgart
Abstract:
The positon solutions discovered so far for several nonlinear evolution equations are singular solutions. It is shown that for a discrete version of the well known sinh-Gordon equation non-singular positon solutions exist. Under appropriate restrictions on the parameters of the construction they are globaly bounded. In the continuum limit the corresponding (singular) solutions of the sinh-Gordon equation are recovered. Bibliography: 11 titles.
Key words and phrases:
discrete sinh-Gordon equation, positon solutions.
Received: 01.03.1994
Citation:
Roland Beutler, Vladimir B. Matveev, “Do nonsingular globaly bounded positon solutions exist?”, Differential geometry, Lie groups and mechanics. Part 14, Zap. Nauchn. Sem. POMI, 215, Nauka, St. Petersburg, 1994, 38–49; J. Math. Sci. (New York), 85:1 (1997), 1578–1585
Linking options:
https://www.mathnet.ru/eng/znsl5921 https://www.mathnet.ru/eng/znsl/v215/p38
|
Statistics & downloads: |
Abstract page: | 851 | Full-text PDF : | 516 |
|