Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 249, Pages 303–312 (Mi znsl591)  

This article is cited in 6 scientific papers (total in 6 papers)

On properties of the free boundary in the neighborhood of contact with the given boundary

N. N. Ural'tseva

Saint-Petersburg State University
Full-text PDF (195 kB) Citations (6)
Abstract: For the simpliest elliptic obstacle problem, the behavior of the free boundary in the vicinity of the points where it contacts the prescribed boundary of the domain is studied. The eairlier result concerning the $C^1$ regularity of the boundary $\partial\mathscr N$ of the noncoincidence set is strengthened. It is proved that the assumed earlier Lipschitz condition on $\partial\mathscr N$ can be omitted.
Received: 21.09.1997
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 101, Issue 5, Pages 3570–3576
DOI: https://doi.org/10.1007/BF02680153
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: N. N. Ural'tseva, “On properties of the free boundary in the neighborhood of contact with the given boundary”, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Zap. Nauchn. Sem. POMI, 249, POMI, St. Petersburg, 1997, 303–312; J. Math. Sci. (New York), 101:5 (2000), 3570–3576
Citation in format AMSBIB
\Bibitem{Ura97}
\by N.~N.~Ural'tseva
\paper On properties of the free boundary in the neighborhood of contact with the given boundary
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 249
\pages 303--312
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl591}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1698524}
\zmath{https://zbmath.org/?q=an:0965.35196}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 101
\issue 5
\pages 3570--3576
\crossref{https://doi.org/10.1007/BF02680153}
Linking options:
  • https://www.mathnet.ru/eng/znsl591
  • https://www.mathnet.ru/eng/znsl/v249/p303
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024