|
Zapiski Nauchnykh Seminarov POMI, 1994, Volume 213, Pages 75–92
(Mi znsl5908)
|
|
|
|
This article is cited in 4 scientific papers (total in 6 papers)
Local estimates of the gradients of solution to a simplest regularisation for some class of nonuniformly elliptic
O. A. Ladyzhenskayaa, N. N. Uraltsevab a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b Saint Petersburg State University
Abstract:
An estimate of $\max_{\Omega'}|u_x^\varepsilon|$, $\Omega'\subset\subset\Omega$, for solutions $u^\varepsilon$ to the family of equations
$$
-\frac d{dx_i}\,\frac{u_{x_i}}{\sqrt{1+u^2_x}}-\varepsilon\Delta u+a(x,u,u_x)=0,\qquad x\in\Omega,\quad\varepsilon\in(0,1],
$$
with a non-differentiated lower term $a$ is given. A majorant in the estimate depends on $\max_{\Omega'}|u_x^\varepsilon|$ and the distance between $\Omega'$ and $\partial\Omega$, but does not depend on $\varepsilon$. The publication has relations with the work [2] and [3]. Bibliography: 4 titles.
Citation:
O. A. Ladyzhenskaya, N. N. Uraltseva, “Local estimates of the gradients of solution to a simplest regularisation for some class of nonuniformly elliptic”, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Zap. Nauchn. Sem. POMI, 213, Nauka, St. Petersburg, 1994, 75–92; J. Math. Sci. (New York), 84:1 (1997), 862–872
Linking options:
https://www.mathnet.ru/eng/znsl5908 https://www.mathnet.ru/eng/znsl/v213/p75
|
Statistics & downloads: |
Abstract page: | 181 | Full-text PDF : | 43 |
|