Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 213, Pages 48–65 (Mi znsl5906)  

This article is cited in 25 scientific papers (total in 25 papers)

Existence and uniqueness of regular solution of Cauchy–Dirichlet problem for some class of doubly nonlinear parabolic equations

A. V. Ivanova, P. Z. Mkrtychiana, W. Jägerb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b Universität Heidelberg, SFB 359
Abstract: The class of equations of the type
\begin{equation} \partial u/\partial t-\operatorname{div}\vec a(u,\nabla u)=f, \tag{1} \end{equation}
such that
\begin{equation} \begin{gathered} \vec a(u,p)\cdot p\ge\nu_0|u|^l|p|^m-\Phi_0(u),\\ |\vec a(u,p)|\le\mu_1|u|^l|p|^{m-1}+\Phi_1(u) \end{gathered} \tag{2} \end{equation}
with some $m\in(1,2)$, $l\ge0$ and $\Phi_i(u)\ge0$ is studied. Similar equations arise in the study of turbulent filtration of gas or a liquid through porous media. Existence and uniqueness in some class of Hölder continuous generalized solutions of Cauchy–Dirichlet problem for equations of the type (1), (2) is proved. Bibliography: 9 titles.
Received: 10.12.1993
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 84, Issue 1, Pages 845–855
DOI: https://doi.org/10.1007/BF02399936
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. V. Ivanov, P. Z. Mkrtychian, W. Jäger, “Existence and uniqueness of regular solution of Cauchy–Dirichlet problem for some class of doubly nonlinear parabolic equations”, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Zap. Nauchn. Sem. POMI, 213, Nauka, St. Petersburg, 1994, 48–65; J. Math. Sci. (New York), 84:1 (1997), 845–855
Citation in format AMSBIB
\Bibitem{IvaMkrJag94}
\by A.~V.~Ivanov, P.~Z.~Mkrtychian, W.~J\"ager
\paper Existence and uniqueness of regular solution of Cauchy--Dirichlet problem for some class of doubly nonlinear parabolic equations
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~25
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 213
\pages 48--65
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5906}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1329309}
\zmath{https://zbmath.org/?q=an:0868.35060|0872.35055}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 84
\issue 1
\pages 845--855
\crossref{https://doi.org/10.1007/BF02399936}
Linking options:
  • https://www.mathnet.ru/eng/znsl5906
  • https://www.mathnet.ru/eng/znsl/v213/p48
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:180
    Full-text PDF :96
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024