|
Zapiski Nauchnykh Seminarov POMI, 1997, Volume 249, Pages 294–302
(Mi znsl590)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
On the estimate of maximum modulus of solution of stationary problem for the Navier–Stokes equations
V. A. Solonnikov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
It is shown that the solution of a nonlinear stationary problem for the Navier–Stokes equations in a bounded domain $\Omega\subset\mathbb R^3$ with the boundary conditions $\vec v\big|_{\partial\Omega}=\vec a(x)$ satisfies the inequality
$$
\sup_{x\in\Omega}|\vec v(x)|\le c\Bigl(\,\sup_{x\in\partial\Omega}|\vec a(x)|\Bigr)
$$
for arbitrary Reynolds number.
Received: 12.04.1997
Citation:
V. A. Solonnikov, “On the estimate of maximum modulus of solution of stationary problem for the Navier–Stokes equations”, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Zap. Nauchn. Sem. POMI, 249, POMI, St. Petersburg, 1997, 294–302; J. Math. Sci. (New York), 101:5 (2000), 3563–3569
Linking options:
https://www.mathnet.ru/eng/znsl590 https://www.mathnet.ru/eng/znsl/v249/p294
|
Statistics & downloads: |
Abstract page: | 210 | Full-text PDF : | 79 |
|