|
Zapiski Nauchnykh Seminarov POMI, 1994, Volume 212, Pages 91–96
(Mi znsl5898)
|
|
|
|
The value regions of initial coefficients in a certain class of meromorphic functions
E. G. Goluzina St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Abstract:
Let $M_{k,\lambda}$ ($0\le\lambda\le1$, $k\ge2$) be the class of functions
$$
f(z)=1/z+a_0+a_1z+\dots,
$$
that are regular and locally univalent for $0<|z|<1$ and satisfy the condition
$$
\lim_{r\to1-}\int_0^{2\pi}|\operatorname{Re}J+\lambda(re^{i\theta})|\,d\theta\le k\pi,
$$
where
$$
J_\lambda(z)=\lambda(1+zf''(z)/f'(z))+(1-\lambda)zf'(z)/f(z).
$$
In the class $M_{k,\lambda}$ we consider sorne coefficient problems and problems concerning distortion theorems. Bibliography: 6 titles.
Received: 01.03.1994
Citation:
E. G. Goluzina, “The value regions of initial coefficients in a certain class of meromorphic functions”, Analytical theory of numbers and theory of functions. Part 12, Zap. Nauchn. Sem. POMI, 212, Nauka, St. Petersburg, 1994, 91–96; J. Math. Sci., 83:6 (1997), 745–749
Linking options:
https://www.mathnet.ru/eng/znsl5898 https://www.mathnet.ru/eng/znsl/v212/p91
|
Statistics & downloads: |
Abstract page: | 77 | Full-text PDF : | 30 |
|