Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 212, Pages 71–90 (Mi znsl5897)  

This article is cited in 1 scientific paper (total in 1 paper)

Spectral decomposition of convolutions

A. I. Vinogradov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Full-text PDF (745 kB) Citations (1)
Abstract: We obtain a spectral decomposition for number-theoretic convolutions of the form $\tau(n)\times\tau(n\pm l;\chi_q)$ where the function $\tau$ is the number of divisors, $\chi_q$ is the quadratic Dirichlet character of module $q$, $l$ is a fixed shift, and $n$ is the summation parameter. This is done by using the shortened functional equation for the convolution, obtained by the author (Zap. Nauchn. Semin. POMI, 211, 104–119 (1994)). A presentation using the vector-matrix language is conducted for two convolutions with shifts $\pm l$ simultaneously, which simplifies symbolic writing of the spectral decompositions. Bibliography: 5 titles.
Received: 20.09.1993
English version:
Journal of Mathematical Sciences, 1997, Volume 83, Issue 6, Pages 731–744
DOI: https://doi.org/10.1007/BF02439200
Bibliographic databases:
Document Type: Article
UDC: 511.512
Language: Russian
Citation: A. I. Vinogradov, “Spectral decomposition of convolutions”, Analytical theory of numbers and theory of functions. Part 12, Zap. Nauchn. Sem. POMI, 212, Nauka, St. Petersburg, 1994, 71–90; J. Math. Sci., 83:6 (1997), 731–744
Citation in format AMSBIB
\Bibitem{Vin94}
\by A.~I.~Vinogradov
\paper Spectral decomposition of convolutions
\inbook Analytical theory of numbers and theory of functions. Part~12
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 212
\pages 71--90
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5897}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1332010}
\zmath{https://zbmath.org/?q=an:0870.11055}
\transl
\jour J. Math. Sci.
\yr 1997
\vol 83
\issue 6
\pages 731--744
\crossref{https://doi.org/10.1007/BF02439200}
Linking options:
  • https://www.mathnet.ru/eng/znsl5897
  • https://www.mathnet.ru/eng/znsl/v212/p71
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:135
    Full-text PDF :52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024