Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 212, Pages 56–70 (Mi znsl5896)  

This article is cited in 14 scientific papers (total in 14 papers)

Density theorems and the mean value of arithmetical functions in short intervals

V. A. Bykovskii

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences
Abstract: Let $\Gamma=SL_2(\mathbb Z)$ and let $Z_\Gamma(s)$ be the Selberg zeta function. Set
$$ \pi_\Gamma(P)=\sum_{N(\mathcal P)\le P}1, $$
where $\mathcal P$ is a primitive hyperbolic class of conjugate elements in $\Gamma$ and $N(\mathcal P)$ is the norm of P. It is shown that for $\mathcal P$. It is shown that for $P^{1/2+\theta}=Q$, $0\le\theta\le1/2$ we have
$$ \pi_\Gamma(P+Q)-\pi_\Gamma=\int_P^{P+Q}\frac{du}{\log u}+O_\varepsilon(QP^{-\sigma(\theta)+\varepsilon}), $$
where
$$ \sigma(\theta)=\frac{\theta^2}2+O(\theta^3),\qquad\theta\to0. $$
Thus, a conjecture of Iwaniec (1984) is proved. Similar asymptotic formulas are obtained for the sums
$$ \sum_{P<d\le P+Q}\frac{h(-d)}{\sqrt d}\quad{\text and}\quad\sum_{P<n\le P+Q}\frac{r_3(n)}{\sqrt n}, $$
where $h(-d),r_3(n)$ is the class number of the imaginary quadratic field of discriminant $-d<0$ and $r_3(n)$ is the number of representations of n by the sum of three squares. Bibliography: 7 titles.
Received: 21.03.1994
English version:
Journal of Mathematical Sciences, 1997, Volume 83, Issue 6, Pages 720–730
DOI: https://doi.org/10.1007/BF02439199
Bibliographic databases:
Document Type: Article
UDC: 511.622
Language: Russian
Citation: V. A. Bykovskii, “Density theorems and the mean value of arithmetical functions in short intervals”, Analytical theory of numbers and theory of functions. Part 12, Zap. Nauchn. Sem. POMI, 212, Nauka, St. Petersburg, 1994, 56–70; J. Math. Sci., 83:6 (1997), 720–730
Citation in format AMSBIB
\Bibitem{Byk94}
\by V.~A.~Bykovskii
\paper Density theorems and the mean value of arithmetical functions in short intervals
\inbook Analytical theory of numbers and theory of functions. Part~12
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 212
\pages 56--70
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5896}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1332009}
\zmath{https://zbmath.org/?q=an:0867.11065|0871.11061}
\transl
\jour J. Math. Sci.
\yr 1997
\vol 83
\issue 6
\pages 720--730
\crossref{https://doi.org/10.1007/BF02439199}
Linking options:
  • https://www.mathnet.ru/eng/znsl5896
  • https://www.mathnet.ru/eng/znsl/v212/p56
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:198
    Full-text PDF :66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024