Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 211, Pages 174–183 (Mi znsl5890)  

This article is cited in 1 scientific paper (total in 1 paper)

The foundations of enumeration theory for finite nilpotent groups

V. N. Shokuev

Kabardino-Balkar State University
Full-text PDF (417 kB) Citations (1)
Abstract: This paper is the first in a series of papers that lay the foundations of enumeration theory for finite groups including the classical inversion calculus on segments of the natural series and on lattices of subsets of finite sets. Since it became possible to calculate the Möbius function on all subgroups of finite nilpotent groups, the Möbius inversion on these groups began to play a decisive role. The efficiency of the inversion method as a regular technique suitable for solution of enumeration problems of group theory is illustrated with a number of concrete and very important enumerations. Bibliography: 13 titles.
Received: 18.08.1994
English version:
Journal of Mathematical Sciences, 1997, Volume 83, Issue 5, Pages 673–679
DOI: https://doi.org/10.1007/BF02434858
Bibliographic databases:
Document Type: Article
UDC: 539.12
Language: Russian
Citation: V. N. Shokuev, “The foundations of enumeration theory for finite nilpotent groups”, Problems in the theory of representations of algebras and groups. Part 3, Zap. Nauchn. Sem. POMI, 211, Nauka, St. Petersburg, 1994, 174–183; J. Math. Sci., 83:5 (1997), 673–679
Citation in format AMSBIB
\Bibitem{Sho94}
\by V.~N.~Shokuev
\paper The foundations of enumeration theory for finite nilpotent groups
\inbook Problems in the theory of representations of algebras and groups. Part~3
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 211
\pages 174--183
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5890}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1333885}
\zmath{https://zbmath.org/?q=an:0858.20016|0871.20012}
\transl
\jour J. Math. Sci.
\yr 1997
\vol 83
\issue 5
\pages 673--679
\crossref{https://doi.org/10.1007/BF02434858}
Linking options:
  • https://www.mathnet.ru/eng/znsl5890
  • https://www.mathnet.ru/eng/znsl/v211/p174
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024