Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 211, Pages 104–119 (Mi znsl5881)  

This article is cited in 2 scientific papers (total in 2 papers)

A shortened equation for convolutions

A. I. Vinogradov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Full-text PDF (617 kB) Citations (2)
Abstract: The zeta functions of convolutions are Dirichlet series of the general form $\sum^\infty a_n\cdot n^{-s}$ therefore, they are well convergent in the right half-plane $\operatorname{Re}s>1$. In the critical strip $\operatorname{re}s\in(0,1)$ the convolutions can be represented in terms of the Linnik–Selberg zeta functions whose coefficients are Kloosterman sums. In the present paper, these two representations are combined into a single representation in the same way as the shortened equation for the classical Riemann zeta function. Bibliography: 10 titles.
Received: 14.01.1994
English version:
Journal of Mathematical Sciences, 1997, Volume 83, Issue 5, Pages 626–636
DOI: https://doi.org/10.1007/BF02434849
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: A. I. Vinogradov, “A shortened equation for convolutions”, Problems in the theory of representations of algebras and groups. Part 3, Zap. Nauchn. Sem. POMI, 211, Nauka, St. Petersburg, 1994, 104–119; J. Math. Sci., 83:5 (1997), 626–636
Citation in format AMSBIB
\Bibitem{Vin94}
\by A.~I.~Vinogradov
\paper A shortened equation for convolutions
\inbook Problems in the theory of representations of algebras and groups. Part~3
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 211
\pages 104--119
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5881}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1333877}
\zmath{https://zbmath.org/?q=an:0870.11054}
\transl
\jour J. Math. Sci.
\yr 1997
\vol 83
\issue 5
\pages 626--636
\crossref{https://doi.org/10.1007/BF02434849}
Linking options:
  • https://www.mathnet.ru/eng/znsl5881
  • https://www.mathnet.ru/eng/znsl/v211/p104
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024