Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 249, Pages 244–255 (Mi znsl588)  

This article is cited in 9 scientific papers (total in 9 papers)

A posteriori error estimates for approximate solutions of variational problems with power growtn functionals

S. I. Repin

State Technological Institute of St. Petersburg
Full-text PDF (177 kB) Citations (9)
Abstract: The present paper is concerned with the derivation of upper estimates of the difference $\|v-u\|$ where $u$ is a minimizer of a variational problem and $v$ is an element of the corresponding functional space. By using methods of duality theory, we derive a majorizing functional, which explicitly depends only on $v$ and the data of the problem. The advantage of this majorant is that it does not contain unknown constants and can be directly computed by simple numerical methods.
Received: 12.02.1997
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 101, Issue 5, Pages 3531–3538
DOI: https://doi.org/10.1007/BF02680150
Bibliographic databases:
UDC: 517.94
Language: English
Citation: S. I. Repin, “A posteriori error estimates for approximate solutions of variational problems with power growtn functionals”, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Zap. Nauchn. Sem. POMI, 249, POMI, St. Petersburg, 1997, 244–255; J. Math. Sci. (New York), 101:5 (2000), 3531–3538
Citation in format AMSBIB
\Bibitem{Rep97}
\by S.~I.~Repin
\paper A~posteriori error estimates for approximate solutions of variational problems with power growtn functionals
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 249
\pages 244--255
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl588}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1698521}
\zmath{https://zbmath.org/?q=an:0961.49016}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 101
\issue 5
\pages 3531--3538
\crossref{https://doi.org/10.1007/BF02680150}
Linking options:
  • https://www.mathnet.ru/eng/znsl588
  • https://www.mathnet.ru/eng/znsl/v249/p244
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024