|
Zapiski Nauchnykh Seminarov POMI, 1994, Volume 211, Pages 67–79
(Mi znsl5878)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree 2 over a local number field ($p\ne2$)
A. A. Bongarenko Saint Petersburg State University
Abstract:
Let $k$ be a nondyadic local number field and let $K=k(\sqrt\omega)$ be its unramifield quadratic extension. A complete description is suggested for the intermediate subgroups of the general linear group $\mathrm{G=GL}(2,k)$ of degree 2 over the field $k$ that contain the nonsplit maximal torus $T=T(\omega)$ (i.e., the image in $\mathrm G$ of the multiplicative group $K^*$ of the field $K$ under the regular embedding). In particular, the torus $T(\omega)$ is polynormal in $\mathrm{GL}(2,k)$. Bibliography: 11 titles.
Received: 18.06.1993
Citation:
A. A. Bongarenko, “Arrangement of the subgroups that contain an unramified quadratic torus in the general linear group of degree 2 over a local number field ($p\ne2$)”, Problems in the theory of representations of algebras and groups. Part 3, Zap. Nauchn. Sem. POMI, 211, Nauka, St. Petersburg, 1994, 67–79; J. Math. Sci., 83:5 (1997), 600–608
Linking options:
https://www.mathnet.ru/eng/znsl5878 https://www.mathnet.ru/eng/znsl/v211/p67
|
Statistics & downloads: |
Abstract page: | 83 | Full-text PDF : | 39 |
|