Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 210, Pages 164–174 (Mi znsl5868)  

Diffraction of wave by cylindrical surface with discontinuous impedance

M. A. Lyalinov

Saint Petersburg State University
Abstract: A leading term of asymptotics is developed for the two-dimensional problem of diffraction of a plane wave by a smooth cylinder with discontinuous impedance. The key domain in the vicinity of light-shadow boundary (Fock region) is considered. It is supposed that the point of the surface impedance jump is placed near the light-shadow boundary. This leads to the intersection of transition regions caused by the discontinuity and the light-shadow terminator respectively. The leading terms include new type Fock integrals beside the standard ones. The asymptotics is simplified in the penumbral, lighted and shadowed regions. Asymptotic evaluation of the integrals leads to the description of the waves of new type which are absent for continuous impedance. Bibliography: 7 titles.
Received: 09.06.1993
English version:
Journal of Mathematical Sciences, 1997, Volume 83, Issue 2, Pages 271–277
DOI: https://doi.org/10.1007/BF02405822
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. A. Lyalinov, “Diffraction of wave by cylindrical surface with discontinuous impedance”, Mathematical problems in the theory of wave propagation. Part 23, Zap. Nauchn. Sem. POMI, 210, Nauka, St. Petersburg, 1994, 164–174; J. Math. Sci., 83:2 (1997), 271–277
Citation in format AMSBIB
\Bibitem{Lya94}
\by M.~A.~Lyalinov
\paper Diffraction of wave by cylindrical surface with discontinuous impedance
\inbook Mathematical problems in the theory of wave propagation. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 210
\pages 164--174
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5868}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1334753}
\zmath{https://zbmath.org/?q=an:0869.35101|0872.35114}
\transl
\jour J. Math. Sci.
\yr 1997
\vol 83
\issue 2
\pages 271--277
\crossref{https://doi.org/10.1007/BF02405822}
Linking options:
  • https://www.mathnet.ru/eng/znsl5868
  • https://www.mathnet.ru/eng/znsl/v210/p164
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:88
    Full-text PDF :43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024