|
Zapiski Nauchnykh Seminarov POMI, 1994, Volume 210, Pages 125–145
(Mi znsl5864)
|
|
|
|
A problem of a point source of $SH$-waves in a case of separation of the variables
S. A. Kochengin St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Abstract:
The equation
$$
\operatorname{div}(\mu\nabla u)+\omega^2\rho u=-\delta(x-x_0)\delta(y-y_0),
$$
where $\mu(x,y)=a(x)b(y)=a(x)b(y)(c(x)+d(y))$ ($a,b,c,d$ are given step functions) is considered. The problem is solved in explicit form and its asymptotic expansion, if $\omega\to0$, is found. Bibliography: 8 titles.
Received: 15.03.1993
Citation:
S. A. Kochengin, “A problem of a point source of $SH$-waves in a case of separation of the variables”, Mathematical problems in the theory of wave propagation. Part 23, Zap. Nauchn. Sem. POMI, 210, Nauka, St. Petersburg, 1994, 125–145; J. Math. Sci., 83:2 (1997), 244–258
Linking options:
https://www.mathnet.ru/eng/znsl5864 https://www.mathnet.ru/eng/znsl/v210/p125
|
Statistics & downloads: |
Abstract page: | 77 | Full-text PDF : | 35 |
|