Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 210, Pages 22–29 (Mi znsl5855)  

Passege of a bending wave through an inhomogeneity within an absolutely hard rib backing an elastic plate

I. V. Andronov

Saint Petersburg State University
Abstract: The wave properties of the system consisting of elastic plate and absolutely rigid infinite rib with a deffect on a segment is examined. The two kinds of studied deffects are an elastic inclusion and a gap.
The Green function method is applied to the diffraction problem and transformes it to singular integro-differencial equations on an interval. For the case of short deffects the nonresonance and resonance asymptotics of scattering pattern are obtained. Bibliography: 5 titles.
These results show that the coefficient of penetration for the gap is much larger than that for the elastic inclusion if the frequency is non resonant.
Received: 22.04.1993
English version:
Journal of Mathematical Sciences, 1997, Volume 83, Issue 2, Pages 175–179
DOI: https://doi.org/10.1007/BF02405809
Bibliographic databases:
Document Type: Article
UDC: 534.26
Language: Russian
Citation: I. V. Andronov, “Passege of a bending wave through an inhomogeneity within an absolutely hard rib backing an elastic plate”, Mathematical problems in the theory of wave propagation. Part 23, Zap. Nauchn. Sem. POMI, 210, Nauka, St. Petersburg, 1994, 22–29; J. Math. Sci., 83:2 (1997), 175–179
Citation in format AMSBIB
\Bibitem{And94}
\by I.~V.~Andronov
\paper Passege of a~bending wave through an inhomogeneity within an absolutely hard rib backing an elastic plate
\inbook Mathematical problems in the theory of wave propagation. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 210
\pages 22--29
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5855}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1334740}
\transl
\jour J. Math. Sci.
\yr 1997
\vol 83
\issue 2
\pages 175--179
\crossref{https://doi.org/10.1007/BF02405809}
Linking options:
  • https://www.mathnet.ru/eng/znsl5855
  • https://www.mathnet.ru/eng/znsl/v210/p22
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024