Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 210, Pages 7–21 (Mi znsl5854)  

This article is cited in 7 scientific papers (total in 7 papers)

The controllability in a filled domain for a multidimensional wave equation with a singular boundary control

S. A. Avdonina, M. I. Belishevb, S. A. Ivanova

a St. Petersburg State University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Full-text PDF (624 kB) Citations (7)
Abstract: A local approach to Inverse Problems (so-called Bl-method) induces the corresponding Boundary Control Problem to describe a reachable set of “waves” $u^f(\cdot,T)$, где $u^f(x,t)$ being a solution of the problem: $u_{tt}-\Delta u=0$ in $\Omega\times(0,T)$, $u|_{t<0}=0$, $u|_{\partial\Omega\times(0,T)}=f$ with singular controls $f$. The following result is established. Let $\Omega^T=\{x\in\Omega\colon\operatorname{dist}(x,\partial\Omega)<T\}$ be a subdomain of $\Omega\subset\mathbb R^n$ ($\operatorname{diam}\Omega<\infty$) filled by waves to the final moment $t=T$; $T_*=\inf\{T\colon\Omega^T=\Omega\}$ be time of filling of the whole $\Omega$. Denote by $D_m=\operatorname{Dom}((-\Delta)^{m/2})$, where $-\Delta$ is Laplace operator defined on $\operatorname{Dom}(-\Delta)=H^2(\Omega)\cap H^1_0(\Omega)$; $D_{-m}=D'_m$; $D_{-m}(\Omega^T)=\{y\in D_{-m}\colon\operatorname{supp}y\subset\Omega^T\}$. The authors prove that if $T<T_*$ then the reachable set $R^T_m=\{u^f(\cdot,T)\colon f\in L_2((0,T);H^{-m}(\partial\Omega))\}$ is dense in $D_{-m}(\Omega^T)$ ($\forall m>0$), but it does not content the class $C^\infty_0(\Omega^T)$. The examples of $a\in C^\infty_0(\Omega^T)$, $a\not\in R^T_m$ are demonstrated. Bibliography: 19 titles.
Received: 15.07.1993
English version:
Journal of Mathematical Sciences, 1997, Volume 83, Issue 2, Pages 165–174
DOI: https://doi.org/10.1007/BF02405808
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: S. A. Avdonin, M. I. Belishev, S. A. Ivanov, “The controllability in a filled domain for a multidimensional wave equation with a singular boundary control”, Mathematical problems in the theory of wave propagation. Part 23, Zap. Nauchn. Sem. POMI, 210, Nauka, St. Petersburg, 1994, 7–21; J. Math. Sci., 83:2 (1997), 165–174
Citation in format AMSBIB
\Bibitem{AvdBelIva94}
\by S.~A.~Avdonin, M.~I.~Belishev, S.~A.~Ivanov
\paper The controllability in a~filled domain for a~multidimensional wave equation with a~singular boundary control
\inbook Mathematical problems in the theory of wave propagation. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 210
\pages 7--21
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5854}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1334739}
\zmath{https://zbmath.org/?q=an:0870.93004}
\transl
\jour J. Math. Sci.
\yr 1997
\vol 83
\issue 2
\pages 165--174
\crossref{https://doi.org/10.1007/BF02405808}
Linking options:
  • https://www.mathnet.ru/eng/znsl5854
  • https://www.mathnet.ru/eng/znsl/v210/p7
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024