|
Zapiski Nauchnykh Seminarov POMI, 1993, Volume 208, Pages 152–173
(Mi znsl5836)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On $n$-equivalence of knots and invariants of finite degree
M. N. Gusarov
Abstract:
A notion of $n$-equivalence of knots is introduced and it is shown that the equivalence classes with the connected sum operation make finitely generated abelian groups composing an inverse sequence. The $n$-equivalence class of knot is the universal invariant of degree $n$ (Vassiliev invariant). Bibliography: 3 titles.
Citation:
M. N. Gusarov, “On $n$-equivalence of knots and invariants of finite degree”, Investigations in topology. Part 7, Zap. Nauchn. Sem. POMI, 208, Nauka, St. Petersburg, 1993, 152–173; J. Math. Sci., 81:2 (1996), 2549–2561
Linking options:
https://www.mathnet.ru/eng/znsl5836 https://www.mathnet.ru/eng/znsl/v208/p152
|
Statistics & downloads: |
Abstract page: | 188 | Full-text PDF : | 93 |
|