Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 249, Pages 118–152 (Mi znsl583)  

The Petersson conjecture for the zeroth weight. I

A. I. Vinogradov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: In the present work, a known result by Eichler–Deligne concerning the Petersson conjecture for finite-dimensional classical spaces is proved for infinite-dimensional Hilbert spaces of weight 0. In this work, the techniques of spectral decompositions of convolutions are used. The work is subdivided into two parts. In this (first) part, an explicit representation of an eigenvalue of the Hecke operator in terms of spectral components of the convolution is obtained. On the basis of this representation, the Petersson conjecture will be proved in the second part.
Received: 04.04.1997
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 101, Issue 5, Pages 3448–3471
DOI: https://doi.org/10.1007/BF02680145
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. I. Vinogradov, “The Petersson conjecture for the zeroth weight. I”, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Zap. Nauchn. Sem. POMI, 249, POMI, St. Petersburg, 1997, 118–152; J. Math. Sci. (New York), 101:5 (2000), 3448–3471
Citation in format AMSBIB
\Bibitem{Vin97}
\by A.~I.~Vinogradov
\paper The Petersson conjecture for the zeroth weight.~I
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 249
\pages 118--152
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl583}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1698516}
\zmath{https://zbmath.org/?q=an:0995.11037}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 101
\issue 5
\pages 3448--3471
\crossref{https://doi.org/10.1007/BF02680145}
Linking options:
  • https://www.mathnet.ru/eng/znsl583
  • https://www.mathnet.ru/eng/znsl/v249/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024