Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1993, Volume 207, Pages 98–100 (Mi znsl5821)  

On the location parameter confidence intervals based on a random size sample from a partially known population

L. B. Klebanov, J. A. Melamed
Abstract: The problem of constructing confidence intervals of a fixed length for the location parameter based on a random size sample is considered. It is proposed to use the confidence interval
$$ \theta^*-u\sqrt p/\sigma<\theta<\theta^*+u\sqrt p/\sigma, $$
where $\theta^*$ is an adaptive estimator, $\sigma^2$ is the Fisher information, and $p^{-1}$ is the mean of the sample size. Nonparametric bounds are given for the limit as $p\to0$ confidence probability. Bibliography: 5 titles.
English version:
Journal of Mathematical Sciences, 1996, Volume 81, Issue 1, Pages 2421–2423
DOI: https://doi.org/10.1007/BF02362346
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: L. B. Klebanov, J. A. Melamed, “On the location parameter confidence intervals based on a random size sample from a partially known population”, Studies in mathematical statistics. Part 10, Zap. Nauchn. Sem. POMI, 207, Nauka, St. Petersburg, 1993, 98–100; J. Math. Sci., 81:1 (1996), 2421–2423
Citation in format AMSBIB
\Bibitem{KleMel93}
\by L.~B.~Klebanov, J.~A.~Melamed
\paper On the location parameter confidence intervals based on a~random size sample from a~partially known population
\inbook Studies in mathematical statistics. Part~10
\serial Zap. Nauchn. Sem. POMI
\yr 1993
\vol 207
\pages 98--100
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5821}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1227977}
\zmath{https://zbmath.org/?q=an:0800.62186|0850.62316}
\transl
\jour J. Math. Sci.
\yr 1996
\vol 81
\issue 1
\pages 2421--2423
\crossref{https://doi.org/10.1007/BF02362346}
Linking options:
  • https://www.mathnet.ru/eng/znsl5821
  • https://www.mathnet.ru/eng/znsl/v207/p98
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:83
    Full-text PDF :37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024