|
Zapiski Nauchnykh Seminarov POMI, 1997, Volume 249, Pages 102–117
(Mi znsl582)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Discrete spectrum in the gaps of perturbed pseudorelativistic Hamiltonian
M. Sh. Birman, A. B. Pushnitskii Saint-Petersburg State University
Abstract:
Pseudorelativistic Hamiltonian
$$
G_{1/2}=\bigl((-i\nabla-\mathbf A)^2+I\bigr)^{1/2}+W, \qquad x\in\mathbb R^d, \quad d\ge 2,
$$
is considered under wide conditions on potentials $\mathbf A(\mathbf x)$, $W(x)$. It is assumed that the real point $\lambda$ is regular for $G_{1/2}$. Let $G_{1/2}(\alpha)=G_{1/2}-\alpha V$, where $\alpha>0$,
$V(x)\ge 0$, $V\in L_d(\mathbb R^d)$. Denote by $N(\lambda,\alpha)$ the number of eigenvalues of $G_{1/2}(t)$ that cross the point $\lambda$ as $t$ increases from 0 to $\alpha$. The Weyl type asymptotics for
$N(\lambda,\alpha)$ as $\alpha\to\infty$ is obtained.
Received: 04.09.1997
Citation:
M. Sh. Birman, A. B. Pushnitskii, “Discrete spectrum in the gaps of perturbed pseudorelativistic Hamiltonian”, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Zap. Nauchn. Sem. POMI, 249, POMI, St. Petersburg, 1997, 102–117; J. Math. Sci. (New York), 101:5 (2000), 3437–3447
Linking options:
https://www.mathnet.ru/eng/znsl582 https://www.mathnet.ru/eng/znsl/v249/p102
|
Statistics & downloads: |
Abstract page: | 214 | Full-text PDF : | 71 |
|