|
Zapiski Nauchnykh Seminarov POMI, 1993, Volume 207, Pages 5–12
(Mi znsl5815)
|
|
|
|
An application of the Neyman–Oearson lemma to Gaussian processes
N. K. Bakirov
Abstract:
Let $\xi(t)$, $i=1,2$, $t\in[0,1]$, be Gaussian zero mean processes with continuous sample paths. Bounds for the probabilities
$$
\beta_i=\mathsf P\{\xi_i(t)-a_i(t)\in B\},\qquad i=1,2,
$$
are given, where $a_i\in C[0,1]$ and $B$ is a Borel subset of $C[0,1]$. Bibliography: 5 titles.
Citation:
N. K. Bakirov, “An application of the Neyman–Oearson lemma to Gaussian processes”, Studies in mathematical statistics. Part 10, Zap. Nauchn. Sem. POMI, 207, Nauka, St. Petersburg, 1993, 5–12; J. Math. Sci., 81:1 (1996), 2357–2362
Linking options:
https://www.mathnet.ru/eng/znsl5815 https://www.mathnet.ru/eng/znsl/v207/p5
|
Statistics & downloads: |
Abstract page: | 102 | Full-text PDF : | 32 |
|