Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1993, Volume 206, Pages 107–118 (Mi znsl5810)  

Free interpolation in some spaces of smooth functions

Yu. V. Netrusov
Abstract: This paper is devoted to the study of the traces of functions from the classes $B^l_{p,\theta}$ or $F^l_{p,\theta}$ on a set $A\subset\mathbb R^n$. In the proofs the results of [1] are essentially used.
We consider the folowing questions:
1) Under what conditions on a compact set $K$, $K\subset\mathbb R^n$, do the traces on $K$ of functions from $B^l_{p,\theta}\cap\mathbb C(\mathbb R^n)$ (or $F^l_{p,\theta}\cap\mathbb C(\mathbb R^n)$ fill in the space $C(K)$?
2) Under what conditions on a Borel set $A$, does the space of traces on $A$ of functions from $F^l_{p,\theta}$, $0<p\le1$, coincide with some quasi-Banach lattice?
3) What is the description of the space of traces in this case?
See Theorem 2.1 for an answer to 1) and Theorem 2.2 for answer to 2) and 3).
In the last part pf the paper we prove counterparts of Theorems 2.1 and 2.2 for spaces of analytic functions. Bibliography: 14 titles.
English version:
Journal of Mathematical Sciences, 1996, Volume 80, Issue 4, Pages 1941–1950
DOI: https://doi.org/10.1007/BF02367009
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: Yu. V. Netrusov, “Free interpolation in some spaces of smooth functions”, Investigations on linear operators and function theory. Part 21, Zap. Nauchn. Sem. POMI, 206, Nauka, St. Petersburg, 1993, 107–118; J. Math. Sci., 80:4 (1996), 1941–1950
Citation in format AMSBIB
\Bibitem{Net93}
\by Yu.~V.~Netrusov
\paper Free interpolation in some spaces of smooth functions
\inbook Investigations on linear operators and function theory. Part~21
\serial Zap. Nauchn. Sem. POMI
\yr 1993
\vol 206
\pages 107--118
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5810}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1255319}
\zmath{https://zbmath.org/?q=an:0828.46033|0860.46020}
\transl
\jour J. Math. Sci.
\yr 1996
\vol 80
\issue 4
\pages 1941--1950
\crossref{https://doi.org/10.1007/BF02367009}
Linking options:
  • https://www.mathnet.ru/eng/znsl5810
  • https://www.mathnet.ru/eng/znsl/v206/p107
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:97
    Full-text PDF :49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024