Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1993, Volume 205, Pages 38–70 (Mi znsl5794)  

This article is cited in 4 scientific papers (total in 4 papers)

The initial-boundary value problem with a free surface condition for the $\varepsilon$-approximations of the Navier–Stokes equations and some their regularizations

A. A. Kotsiolis, A. P. Oskolkov
Abstract: We study the unique solvability in the large on the semiaxis $\mathbb R^2$ of the initial boundary value problems (IBVP) with the boundary slipcondition (the natural boundary condition) for the $\varepsilon$-approximations (0.6)–(0.8), (0.20); (0.13)–(0.15), (0.21), and (0.16–0.18), (0.22) of the Navier–Stokes equations (NSE), of the NSE modified in the sense of O. A. Ladyzhenskaya, and the equations of motion of the Kelvin–Voight fluids. For the classical solutions of perturbed problems we prove certain estimates which are uniform with respect to $\varepsilon$, and show that as $\varepsilon\to0$ the classical solutions of the perturbed IBVP respectively converge to the classical solutions of the IBVP with the boundary slip condition for the NSE, for the NSE (0.11) modified in the sense of Ladyzhenskaya, and for the equations (0.12) of motion of the Kelvin–Voight fluids. Bibliography: 40 titles.
English version:
Journal of Mathematical Sciences, 1996, Volume 80, Issue 3, Pages 1773–1801
DOI: https://doi.org/10.1007/BF02362777
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: A. A. Kotsiolis, A. P. Oskolkov, “The initial-boundary value problem with a free surface condition for the $\varepsilon$-approximations of the Navier–Stokes equations and some their regularizations”, Differential geometry, Lie groups and mechanics. Part 13, Zap. Nauchn. Sem. POMI, 205, Nauka, St. Petersburg, 1993, 38–70; J. Math. Sci., 80:3 (1996), 1773–1801
Citation in format AMSBIB
\Bibitem{CotOsk93}
\by A.~A.~Kotsiolis, A.~P.~Oskolkov
\paper The initial-boundary value problem with a~free surface condition for the $\varepsilon$-approximations of the Navier--Stokes equations and some their regularizations
\inbook Differential geometry, Lie groups and mechanics. Part~13
\serial Zap. Nauchn. Sem. POMI
\yr 1993
\vol 205
\pages 38--70
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5794}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1255303}
\zmath{https://zbmath.org/?q=an:0837.35124|0860.35099}
\transl
\jour J. Math. Sci.
\yr 1996
\vol 80
\issue 3
\pages 1773--1801
\crossref{https://doi.org/10.1007/BF02362777}
Linking options:
  • https://www.mathnet.ru/eng/znsl5794
  • https://www.mathnet.ru/eng/znsl/v205/p38
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :113
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024