Abstract:
It is shown that two-point time-dependent temperature correlators of the Heisenberg XXO spinichain satisfy a system of classical equations in the distance between correlating spins and time. This system is an integrable lattice version of the nonlinear Schrödinger equations. Bibliography: 17 titles.
Citation:
A. G. Izergin, A. R. Its, V. E. Korepin, N. A. Slavnov, “Integrable differential equations for temperature correlation functions of the Heisenberg XXO chain”, Differential geometry, Lie groups and mechanics. Part 13, Zap. Nauchn. Sem. POMI, 205, Nauka, St. Petersburg, 1993, 6–20; J. Math. Sci., 80:3 (1996), 1747–1759
\Bibitem{IzeItsKor93}
\by A.~G.~Izergin, A.~R.~Its, V.~E.~Korepin, N.~A.~Slavnov
\paper Integrable differential equations for temperature correlation functions of the Heisenberg XXO chain
\inbook Differential geometry, Lie groups and mechanics. Part~13
\serial Zap. Nauchn. Sem. POMI
\yr 1993
\vol 205
\pages 6--20
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5791}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1255300}
\zmath{https://zbmath.org/?q=an:0810.35121|0860.35120}
\transl
\jour J. Math. Sci.
\yr 1996
\vol 80
\issue 3
\pages 1747--1759
\crossref{https://doi.org/10.1007/BF02362774}
Linking options:
https://www.mathnet.ru/eng/znsl5791
https://www.mathnet.ru/eng/znsl/v205/p6
This publication is cited in the following 4 articles:
Federico Raffaele De Filippi, Antonio Francesco Mello, Daniel Sacco Shaikh, Maura Sassetti, Niccolò Traverso Ziani, Michele Grossi, “Few-Body Precursors of Topological Frustration”, Symmetry, 16:8 (2024), 1078
M. Saeedian, A. Zahabi, “Exact solvability and asymptotic aspects of generalized XX0 spin chains”, Physica A: Statistical Mechanics and its Applications, 549 (2020), 124406
M Saeedian, A Zahabi, “Phase structure of XX0 spin chain and nonintersecting Brownian motion”, J. Stat. Mech., 2018:1 (2018), 013104
N. A. Slavnov, “Differential equations for multipoint correlation functions in one-dimensional impenetrable
bose-gas”, Theoret. and Math. Phys., 106:1 (1996), 131–142