|
Zapiski Nauchnykh Seminarov POMI, 1993, Volume 204, Pages 143–166
(Mi znsl5789)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Applications of the Petersson formula for a bilinear form in Fourier coefficients of cusp forms
O. M. Fomenko
Abstract:
Let $S_{2k}(\Gamma_0(N),\chi)$ be the space of holomorphic $\Gamma_0(N)$-cusp forms of integral weight $k$ and character $\chi$. Let $f_j(z)$, $1\le j\le v_{2k}^\mathrm{new}(p)$, be the set of normalized newforms of $S_{2k}(\Gamma_0(p),1)$, where $p$ is a prime, and let $L_j(s)=L_{f_j}(s)$ be the $L$-function of $f_j(z)$. It is proved that
$$
\sum_{1\le j\le v_{2k}^\mathrm{new}(p)}L_j^2\left(\frac12\right)\ll p\log^4p\cdot\log\log p,\qquad p\to\infty,
$$
where $2k\ge4$. Errors in an earlier paper (RŽMat, 1989, 4A65) are corrected. Bibliography: 11 titles.
Citation:
O. M. Fomenko, “Applications of the Petersson formula for a bilinear form in Fourier coefficients of cusp forms”, Analytical theory of numbers and theory of functions. Part 11, Zap. Nauchn. Sem. POMI, 204, Nauka, St. Petersburg, 1993, 143–166; J. Math. Sci., 79:5 (1996), 1359–1372
Linking options:
https://www.mathnet.ru/eng/znsl5789 https://www.mathnet.ru/eng/znsl/v204/p143
|
Statistics & downloads: |
Abstract page: | 153 | Full-text PDF : | 41 |
|