|
Zapiski Nauchnykh Seminarov POMI, 1993, Volume 204, Pages 82–89
(Mi znsl5785)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Fundamental rectangles of admissible lattices
Kh. Kh. Ruzimuradov
Abstract:
Let $\Lambda$ be a unimodular lattice in $\mathbb R^2$, $\mu$ a homogeneous minimum of $\Lambda$; let $P(a,b)\subset\mathbb R^2$ be a rectangle with vertices at the points $(a,0),\dots,(0,b)$, $P(a,b)+X$ its image under the translation by a vector $X\in\mathbb R^2$. We prove that there exists a sequence of positive numbers $v_1<v_2<\dots<v_k<\dots$ with $2\sqrt2\mu^{-2}v_{k-1}>v_k$, such that for $u>\mu$ the rectangle $P(u,v_k)+X$ contains $T=S(P)+R$ points of $\Lambda$, where $|R|<5$; here $S(P)$ is the area of the rectangle. Bibliography: 4 titles.
Citation:
Kh. Kh. Ruzimuradov, “Fundamental rectangles of admissible lattices”, Analytical theory of numbers and theory of functions. Part 11, Zap. Nauchn. Sem. POMI, 204, Nauka, St. Petersburg, 1993, 82–89; J. Math. Sci., 79:5 (1996), 1320–1324
Linking options:
https://www.mathnet.ru/eng/znsl5785 https://www.mathnet.ru/eng/znsl/v204/p82
|
Statistics & downloads: |
Abstract page: | 89 | Full-text PDF : | 35 |
|