|
Zapiski Nauchnykh Seminarov POMI, 1993, Volume 204, Pages 55–60
(Mi znsl5783)
|
|
|
|
Structural formulas and value regions of functionals in certain classes of regular functions
E. G. Goluzina
Abstract:
We study the structural properties of the class $M_{k,\lambda,b}$ ($k\ge2$, $0\le\lambda\le1$, $b\in\mathbb C\setminus\{0\}$) of functions $f(z)=z+\dots$ which are regular in $|z|<1$ and satisfy the conditions $f(z)f'(z)z^{-1}\ne0$ and $\lim_{r\to1-0}\int_0^{2\pi}|\operatorname{Re}J(z)|\,d\theta\le k\pi$ ($z=re^{i\theta}$), where
$$
J(z)=\lambda(1+b^{-1}zf''(z)/f'(z))+(1-\lambda)(b^{-1}zf'(z)/f(z)+1+b^{-1}).
$$
The value regions of some functionals on this class are found. The case $\lambda=1$ was considered in our previous paper. Bibliography: 4 titles.
Citation:
E. G. Goluzina, “Structural formulas and value regions of functionals in certain classes of regular functions”, Analytical theory of numbers and theory of functions. Part 11, Zap. Nauchn. Sem. POMI, 204, Nauka, St. Petersburg, 1993, 55–60; J. Math. Sci., 79:5 (1996), 1304–1307
Linking options:
https://www.mathnet.ru/eng/znsl5783 https://www.mathnet.ru/eng/znsl/v204/p55
|
Statistics & downloads: |
Abstract page: | 89 | Full-text PDF : | 40 |
|