Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1993, Volume 204, Pages 11–36 (Mi znsl5781)  

This article is cited in 4 scientific papers (total in 4 papers)

The class numbers of real quadratic fields of discriminant $4p$

E. P. Golubeva
Full-text PDF (938 kB) Citations (4)
Abstract: For $p$ prime, $p=3\,(\operatorname{mod}4)$, we study the expansion of $\sqrt p$ into a continued fraction. In particular, we show that in the expansion
$$ \sqrt p=[n,\overline{l_1,\dots,l_L,l,l_L,\dots,l_1,2n}] $$
$l_1,\dots,l_L$ satisfy at least $L/2$ linear relations. We also obtain a new lower bound for the fundamental unit $\varepsilon_p$ of the field $\mathbb Q(\sqrt p)$ for almost all $p$ under consideration: $\varepsilon_p>p^3/\log^{1+\delta}p$ for all $p\ge x$ with $O(x/\log^{1+\delta}x)$ possible exceptions (here $\delta>0$ is an arbitrary constant), and an estimate for the mean value of the class number of $\mathbb Q(\sqrt p)$ with respect to averaging over $\varepsilon_p$:
$$ \sum_{p\equiv3\,(\operatorname{mod}4),\ \varepsilon_p\le x}h(p)=O(x). $$
Bibliography: 11 titles.
English version:
Journal of Mathematical Sciences, 1996, Volume 79, Issue 5, Pages 1277–1292
DOI: https://doi.org/10.1007/BF02366457
Bibliographic databases:
Document Type: Article
UDC: 511.622
Language: Russian
Citation: E. P. Golubeva, “The class numbers of real quadratic fields of discriminant $4p$”, Analytical theory of numbers and theory of functions. Part 11, Zap. Nauchn. Sem. POMI, 204, Nauka, St. Petersburg, 1993, 11–36; J. Math. Sci., 79:5 (1996), 1277–1292
Citation in format AMSBIB
\Bibitem{Gol93}
\by E.~P.~Golubeva
\paper The class numbers of real quadratic fields of discriminant~$4p$
\inbook Analytical theory of numbers and theory of functions. Part~11
\serial Zap. Nauchn. Sem. POMI
\yr 1993
\vol 204
\pages 11--36
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5781}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1216864}
\zmath{https://zbmath.org/?q=an:0814.11023|0844.11027}
\transl
\jour J. Math. Sci.
\yr 1996
\vol 79
\issue 5
\pages 1277--1292
\crossref{https://doi.org/10.1007/BF02366457}
Linking options:
  • https://www.mathnet.ru/eng/znsl5781
  • https://www.mathnet.ru/eng/znsl/v204/p11
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:161
    Full-text PDF :74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024