Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 249, Pages 20–39 (Mi znsl578)  

This article is cited in 8 scientific papers (total in 8 papers)

On the partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth

A. A. Arkhipova

Saint-Petersburg State University
Full-text PDF (261 kB) Citations (8)
Abstract: We consider quasilinear nondiagonal parabolic systems with quadratic growth on the gradient in a parabolic cylinder $Q$. Under Dirichlet and Neumann boundary conditions partial Hölder continuity up to the lateral surface of $Q$ of solutions $u\in W_2^{1,1} (Q)\cap L^\infty(Q)$ is proved. Hausdorff dimension of a singular set is estimated. In the proof we get of the maximum principle theorem for corresponding model linear problems.
Received: 05.05.1997
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 101, Issue 5, Pages 3385–3397
DOI: https://doi.org/10.1007/BF02680140
Bibliographic databases:
UDC: 517.9
Language: English
Citation: A. A. Arkhipova, “On the partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth”, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Zap. Nauchn. Sem. POMI, 249, POMI, St. Petersburg, 1997, 20–39; J. Math. Sci. (New York), 101:5 (2000), 3385–3397
Citation in format AMSBIB
\Bibitem{Ark97}
\by A.~A.~Arkhipova
\paper On~the partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 249
\pages 20--39
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl578}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1698511}
\zmath{https://zbmath.org/?q=an:0969.35032}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 101
\issue 5
\pages 3385--3397
\crossref{https://doi.org/10.1007/BF02680140}
Linking options:
  • https://www.mathnet.ru/eng/znsl578
  • https://www.mathnet.ru/eng/znsl/v249/p20
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024