|
Zapiski Nauchnykh Seminarov POMI, 1992, Volume 203, Pages 12–16
(Mi znsl5768)
|
|
|
|
Case of an exact integrability of $SH$-wave equation
V. M. Babich
Abstract:
The equation for $SH$-wave is considered
$$
\frac\partial{\partial x}\left(\mu\frac{\partial w}{\partial x}\right)+\frac\partial{\partial y}\left(\mu\frac{\partial w}{\partial y}\right)=\rho\frac{\partial^2w}{\partial t^2},
$$
when $\mu=a(x)b(y)$, $\rho=a(x)b(y)(c(x)+d(y))$ ($a,b,c,d$ are known functions). The problem of interaction of a whispering gallery wave with a vertical interface is solved in explicit form.
Citation:
V. M. Babich, “Case of an exact integrability of $SH$-wave equation”, Mathematical problems in the theory of wave propagation. Part 22, Zap. Nauchn. Sem. POMI, 203, Nauka, St. Petersburg, 1992, 12–16; J. Math. Sci., 79:4 (1996), 1166–1168
Linking options:
https://www.mathnet.ru/eng/znsl5768 https://www.mathnet.ru/eng/znsl/v203/p12
|
Statistics & downloads: |
Abstract page: | 152 | Full-text PDF : | 29 |
|