Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1992, Volume 203, Pages 5–11 (Mi znsl5767)  

Integro-differential equations of the convolution on a finite interval with a kernel having logarithmic singularity

I. V. Andronov
Abstract: Integro-differential equations of the convolution are examined
$$ \frac{d^{2n}}{dx^{2n}}\int^1_{-1}\left(a((x-t)^2)\ln|x-t|+b((x-t)^2)\right)\varphi(t)\,dt=f(x). $$
Here functions $a(s)$ and $b(s)$ belong to $C^\infty$ and decrease at infinity. The Fourier transform of the kernel is supposed to be sectorial, i.e. it has a positive projection on some direction in complex plane. The theorem of existence and uniqueness of solutions in spaces defined by the representation
$$ \varphi(t)=(1-t^2)^{\delta_n}\psi(t)\qquad\delta_n=n-1+\varepsilon,\quad\varepsilon>0,\quad\psi\in C^1[-1,1], $$
is proved. The proprieties of continuity of solutions are established.
English version:
Journal of Mathematical Sciences, 1996, Volume 79, Issue 4, Pages 1161–1165
DOI: https://doi.org/10.1007/BF02362880
Bibliographic databases:
Document Type: Article
UDC: 534.26+517.4
Language: Russian
Citation: I. V. Andronov, “Integro-differential equations of the convolution on a finite interval with a kernel having logarithmic singularity”, Mathematical problems in the theory of wave propagation. Part 22, Zap. Nauchn. Sem. POMI, 203, Nauka, St. Petersburg, 1992, 5–11; J. Math. Sci., 79:4 (1996), 1161–1165
Citation in format AMSBIB
\Bibitem{And92}
\by I.~V.~Andronov
\paper Integro-differential equations of the convolution on a~finite interval with a~kernel having logarithmic singularity
\inbook Mathematical problems in the theory of wave propagation. Part~22
\serial Zap. Nauchn. Sem. POMI
\yr 1992
\vol 203
\pages 5--11
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1193674}
\zmath{https://zbmath.org/?q=an:0802.45004|0844.45006}
\transl
\jour J. Math. Sci.
\yr 1996
\vol 79
\issue 4
\pages 1161--1165
\crossref{https://doi.org/10.1007/BF02362880}
Linking options:
  • https://www.mathnet.ru/eng/znsl5767
  • https://www.mathnet.ru/eng/znsl/v203/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024