|
Zapiski Nauchnykh Seminarov POMI, 2014, Volume 422, Pages 5–17
(Mi znsl5760)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Spectral estimation problem in infinite dimensional spaces
S. A. Avdonina, V. S. Mikhaylovb a Department of Mathematics and Statistics University of Alaska Fairbanks, PO Box 756660 Fairbanks, AK 99775, USA
b St. Petersburg Department of the V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, 191023 Fontanka 27, St. Petersburg, Russia
Abstract:
We consider the generalized spectral estimation problem in infinite dimensional spaces. We solve this problem using the boundary control approach to inverse theory and provide an application to the initial boundary value problem for a hyperbolic system.
Key words and phrases:
spectral estimation problem, boundary control method, identification problem.
Received: 30.11.2012
Citation:
S. A. Avdonin, V. S. Mikhaylov, “Spectral estimation problem in infinite dimensional spaces”, Mathematical problems in the theory of wave propagation. Part 43, Zap. Nauchn. Sem. POMI, 422, POMI, St. Petersburg, 2014, 5–17; J. Math. Sci. (N. Y.), 206:3 (2015), 231–240
Linking options:
https://www.mathnet.ru/eng/znsl5760 https://www.mathnet.ru/eng/znsl/v422/p5
|
Statistics & downloads: |
Abstract page: | 260 | Full-text PDF : | 64 | References: | 54 |
|