Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 422, Pages 5–17 (Mi znsl5760)  

This article is cited in 1 scientific paper (total in 1 paper)

Spectral estimation problem in infinite dimensional spaces

S. A. Avdonina, V. S. Mikhaylovb

a Department of Mathematics and Statistics University of Alaska Fairbanks, PO Box 756660 Fairbanks, AK 99775, USA
b St. Petersburg Department of the V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, 191023 Fontanka 27, St. Petersburg, Russia
Full-text PDF (220 kB) Citations (1)
References:
Abstract: We consider the generalized spectral estimation problem in infinite dimensional spaces. We solve this problem using the boundary control approach to inverse theory and provide an application to the initial boundary value problem for a hyperbolic system.
Key words and phrases: spectral estimation problem, boundary control method, identification problem.
Received: 30.11.2012
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 206, Issue 3, Pages 231–240
DOI: https://doi.org/10.1007/s10958-015-2307-7
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: S. A. Avdonin, V. S. Mikhaylov, “Spectral estimation problem in infinite dimensional spaces”, Mathematical problems in the theory of wave propagation. Part 43, Zap. Nauchn. Sem. POMI, 422, POMI, St. Petersburg, 2014, 5–17; J. Math. Sci. (N. Y.), 206:3 (2015), 231–240
Citation in format AMSBIB
\Bibitem{AvdMik14}
\by S.~A.~Avdonin, V.~S.~Mikhaylov
\paper Spectral estimation problem in infinite dimensional spaces
\inbook Mathematical problems in the theory of wave propagation. Part~43
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 422
\pages 5--17
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5760}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 206
\issue 3
\pages 231--240
\crossref{https://doi.org/10.1007/s10958-015-2307-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953352895}
Linking options:
  • https://www.mathnet.ru/eng/znsl5760
  • https://www.mathnet.ru/eng/znsl/v422/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :64
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024