Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 421, Pages 138–151 (Mi znsl5756)  

This article is cited in 1 scientific paper (total in 1 paper)

A method for construction of Lie group invariants

Yu. G. Paliiab

a Institute of Applied Physics, Chisinau, Moldova
b Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia
Full-text PDF (243 kB) Citations (1)
References:
Abstract: For an adjoint action of a Lie group $G$ (or its subgroup) on Lie algebra Lie $(G)$ we suggest a method for construction of invariants. The method is easy in implementation and may shed the light on algebraical independence of invariants. The main idea is to extent automorphisms of the Cartan subalgebra to automorphisms of the whole Lie algebra Lie $(G)$. Corresponding matrices in a linear space $V\cong\operatorname{Lie}(G)$ define a Reynolds operator “gathering” invariants of torus $\mathcal T\subset G$ into special polynomials. A condition for a linear combination of polynomials to be $G$-invariant is equivalent to the existence of a solution for a certain system of linear equations on the coefficients in the combination.
As an example we consider the adjoint action of the Lie group $\operatorname{SL}(3)$ (and its subgroup $\operatorname{SL}(2)$) on the Lie algebra $\mathfrak{sl}(3)$.
Key words and phrases: Lie algebras, invariant ring for a Lie group, Weyl group, Reynolds operator, Molien function.
Received: 13.11.2013
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 200, Issue 6, Pages 725–733
DOI: https://doi.org/10.1007/s10958-014-1965-1
Bibliographic databases:
Document Type: Article
UDC: 517.986
Language: English
Citation: Yu. G. Palii, “A method for construction of Lie group invariants”, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Zap. Nauchn. Sem. POMI, 421, POMI, St. Petersburg, 2014, 138–151; J. Math. Sci. (N. Y.), 200:6 (2014), 725–733
Citation in format AMSBIB
\Bibitem{Pal14}
\by Yu.~G.~Palii
\paper A method for construction of Lie group invariants
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXIII
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 421
\pages 138--151
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5756}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 200
\issue 6
\pages 725--733
\crossref{https://doi.org/10.1007/s10958-014-1965-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940297481}
Linking options:
  • https://www.mathnet.ru/eng/znsl5756
  • https://www.mathnet.ru/eng/znsl/v421/p138
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :36
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024