Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 419, Pages 139–153 (Mi znsl5742)  

This article is cited in 2 scientific papers (total in 2 papers)

Bounds for the largest two eigenvalues of the signless Laplacian

L. Yu. Kolotilina

St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia
Full-text PDF (243 kB) Citations (2)
References:
Abstract: In the paper, a new upper bound for the largest eigenvalue $q_1$ of the signless Laplacian $Q_G=D_G+A_G$ of a graph $G$, generalizing and improving the known bound $q_1\le\Delta_1+\Delta_2$, where $\Delta_1\ge\cdots\ge\Delta_n$ are the ordered vertex degrees, and new lower bounds for the second largest eigenvalue $q_2$ of $Q_G$ are proved. As implications, an upper bound for the difference $q_1-\mu_1$ of the largest eigenvalues of the signless Laplacian $Q_G$ and of the Laplacian $L_G=D_G-A_G$, an upper bound for the largest eigenvalue of the adjacency matrix $A_G$, and an upper bound for the difference $q_1-q_2$ are obtained. All the bounds suggested are expressed in terms of the vertex degrees.
Key words and phrases: graph, adjacency matrix, Laplacian, signless Laplacian, largest eigenvalue, second largest eigenvalue, upper bound, lower bound.
Received: 01.11.2013
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 199, Issue 4, Pages 448–455
DOI: https://doi.org/10.1007/s10958-014-1872-5
Bibliographic databases:
Document Type: Article
UDC: 512.643
Language: Russian
Citation: L. Yu. Kolotilina, “Bounds for the largest two eigenvalues of the signless Laplacian”, Computational methods and algorithms. Part XXVI, Zap. Nauchn. Sem. POMI, 419, POMI, St. Petersburg, 2013, 139–153; J. Math. Sci. (N. Y.), 199:4 (2014), 448–455
Citation in format AMSBIB
\Bibitem{Kol13}
\by L.~Yu.~Kolotilina
\paper Bounds for the largest two eigenvalues of the signless Laplacian
\inbook Computational methods and algorithms. Part~XXVI
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 419
\pages 139--153
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5742}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 199
\issue 4
\pages 448--455
\crossref{https://doi.org/10.1007/s10958-014-1872-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902319225}
Linking options:
  • https://www.mathnet.ru/eng/znsl5742
  • https://www.mathnet.ru/eng/znsl/v419/p139
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :57
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024