Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 247, Pages 242–267 (Mi znsl574)  

This article is cited in 7 scientific papers (total in 7 papers)

Uniqueness theorems for analytic vector-valued functions

E. Fricain

Universite Bordeaux 1, Laboratoire Bordelais de Recherche en Informatique
Full-text PDF (276 kB) Citations (7)
Abstract: Using the Berezin transformation, we give a multidimensional analog of a uniqueness theorem of N.Nikolski concerning distance functions and subspaces of a Hilbert space of analytic functions. Then, we establish some uniqueness properties drawing connections between two analytic $X$-valued functions $F$ and $G$ that satisfy $\|F(z)\|\equiv\|G(z)\|,\,\forall z\in\Omega$, where $X$ is a Banach space and $\Omega$ a connected domain in $\mathbb C^n$. The particular case where $X=\ell_n^p$ and $\Omega=\mathbb D=\{z\in\mathbb C\,:\,|z|<1\,\}$ will lead us to the notion of flexible and inflexible functions. We give a complete description of these functions when $p=+\infty,\,n\in\mathbb N^*$ and when $n=2,\,1\le p\le+\infty$.
Received: 01.11.1996
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 101, Issue 3, Pages 3193–3210
DOI: https://doi.org/10.1007/BF02673744
Bibliographic databases:
UDC: 517.5
Language: English
Citation: E. Fricain, “Uniqueness theorems for analytic vector-valued functions”, Investigations on linear operators and function theory. Part 25, Zap. Nauchn. Sem. POMI, 247, POMI, St. Petersburg, 1997, 242–267; J. Math. Sci. (New York), 101:3 (2000), 3193–3210
Citation in format AMSBIB
\Bibitem{Fri97}
\by E.~Fricain
\paper Uniqueness theorems for analytic vector-valued functions
\inbook Investigations on linear operators and function theory. Part~25
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 247
\pages 242--267
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl574}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1692671}
\zmath{https://zbmath.org/?q=an:0961.46029}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 101
\issue 3
\pages 3193--3210
\crossref{https://doi.org/10.1007/BF02673744}
Linking options:
  • https://www.mathnet.ru/eng/znsl574
  • https://www.mathnet.ru/eng/znsl/v247/p242
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024