|
Zapiski Nauchnykh Seminarov POMI, 1997, Volume 247, Pages 242–267
(Mi znsl574)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
Uniqueness theorems for analytic vector-valued functions
E. Fricain Universite Bordeaux 1, Laboratoire Bordelais de Recherche en Informatique
Abstract:
Using the Berezin transformation, we give a multidimensional analog of a uniqueness theorem of N.Nikolski concerning distance functions and subspaces of a Hilbert space of analytic functions. Then, we establish some
uniqueness properties drawing connections between two analytic $X$-valued functions $F$ and $G$ that satisfy $\|F(z)\|\equiv\|G(z)\|,\,\forall z\in\Omega$, where $X$ is a Banach space and $\Omega$ a connected domain in $\mathbb C^n$. The particular case where $X=\ell_n^p$ and $\Omega=\mathbb D=\{z\in\mathbb C\,:\,|z|<1\,\}$ will lead us to the notion of flexible and inflexible functions. We give a complete description of
these functions when $p=+\infty,\,n\in\mathbb N^*$ and when $n=2,\,1\le p\le+\infty$.
Received: 01.11.1996
Citation:
E. Fricain, “Uniqueness theorems for analytic vector-valued functions”, Investigations on linear operators and function theory. Part 25, Zap. Nauchn. Sem. POMI, 247, POMI, St. Petersburg, 1997, 242–267; J. Math. Sci. (New York), 101:3 (2000), 3193–3210
Linking options:
https://www.mathnet.ru/eng/znsl574 https://www.mathnet.ru/eng/znsl/v247/p242
|
Statistics & downloads: |
Abstract page: | 180 | Full-text PDF : | 74 |
|