|
Zapiski Nauchnykh Seminarov POMI, 2013, Volume 419, Pages 43–51
(Mi znsl5737)
|
|
|
|
On a problem in the class of typically real functions
E. G. Goluzina St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia
Abstract:
Let $T$ be the class of functions $f(z)=z+\sum^\infty_{n=2}c_nz^n$ regular and typically real in the disk $U=\{z\in\mathbb C\colon|z|<1\}$. In the paper, sharp estimates on the derivative $f'(r)$ ($0<r<1$) for functions in the class $T$ in terms of $f(r)$ and $c_2$ and also $f(r)$, $c_2$, and $c_3$ are obtained.
Received: 24.10.2013
Citation:
E. G. Goluzina, “On a problem in the class of typically real functions”, Computational methods and algorithms. Part XXVI, Zap. Nauchn. Sem. POMI, 419, POMI, St. Petersburg, 2013, 43–51; J. Math. Sci. (N. Y.), 199:4 (2014), 394–399
Linking options:
https://www.mathnet.ru/eng/znsl5737 https://www.mathnet.ru/eng/znsl/v419/p43
|
Statistics & downloads: |
Abstract page: | 258 | Full-text PDF : | 62 | References: | 64 |
|